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a b s t r a c t 

We add to the emerging literature on empirical asset pricing in the Chinese stock mar- 

ket by building and analyzing a comprehensive set of return prediction factors using var- 

ious machine learning algorithms. Contrasting previous studies for the US market, liquid- 

ity emerges as the most important predictor, leading us to closely examine the impact of 

transaction costs. The retail investors’ dominating presence positively affects short-term 

predictability, particularly for small stocks. Another feature that distinguishes the Chinese 

market from the US market is the high predictability of large stocks and state-owned en- 

terprises over longer horizons. The out-of-sample performance remains economically sig- 

nificant after transaction costs. 
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1. Introduction 

As of October 2020, the total value of China’s stock

market has climbed to a record high of more than USD

10 trillion (RMB 67 trillion), as the country’s accelerating

economic recovery from the COVID-19 pandemic has

surpassed the previous high reached during an equity

bubble in 2015, making it the second-largest in the world,
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after the US at nearly USD 39 trillion. 1 However, it is not 

only the size but, equally important, the specificity of the 

Chinese stock market that makes this market particularly 

attractive for academic research and allows us to explore 

questions that contribute to our understanding of emerg- 

ing markets and complement our knowledge of financial 

systems in other institutional settings. In particular, we 

identify at least three key features of the Chinese stock 

market. 

First, unlike developed markets that are dominated 

by institutional investors, the Chinese stock market is 

dominated by retail investors. According to the 2019 

yearbook of the Shanghai Stock Exchange, there are 214.5 

million investors in China; 213.8 million are individual 
1 We adopt the market capitalization indexes from Bloomberg. These 

indices do not include ETFs and ADRs. They include only actively traded 

primary securities on the country’s exchanges to avoid double counting. 
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investors, and 0.7 million are institutional investors.

Individual investors hold 99.8% of all accounts holding

stocks. The speculative and short-term trading motives

of many retail investors may lead to increased turnover.

Consequently, the value of shares traded stood at 224% of

market capitalization in 2019, compared to 108% for the

US market. 2 This peculiarity creates heightened volatility

that may disconnect share prices from the underlying

economic conditions. Against this background, we ask

whether, in such a market, technical indicators emerging

from collectivistic investment behavior matter more for

asset pricing than firm fundamentals. 

Second, as Allen et al. (2005) argue in their seminal pa-

per, a key characteristic of China’s financial system from

an institutional perspective is that it is centrally controlled,

bank-dominated, and uniquely relationship-driven. For ex-

ample, the process of IPOs and seasonal stock offerings is

highly political, and companies cannot predict when the

market value will be high. On the other hand, listed com-

panies, especially state-owned enterprises (SOEs), are pre-

vented from shares buy-backs when share prices fall below

fundamental values. These automatic market correction

mechanisms are therefore affected by government-oriented

restrictions ( Mei et al., 2009 ). The SOEs’ prominent role in

China’s capital markets deserve a different treatment for

their importance and uniqueness. Not only are they often

criticized for the lack of information transparency, but the

departure of the SOEs’ political objectives from value max-

imization may harm their corporate performance. See, e.g.,

Bai et al. (2006) , Gan et al. (2018) , Jiang and Kim (2020) .

Therefore, we examine whether return predictability and

portfolio performance are compromised for SOEs where

government signaling plays such a prominent role. 

Third, the Chinese market has a limited history of short

sales. Before 2010, Chinese investors faced tight short-

selling restrictions. These were partly relieved in March

2010, when the Chinese Security Regulatory Commission

allowed a limited number of brokerage firms to short sell

90 stocks on a special list ( Gao and Ding, 2019 ). After

short-sale refinancing was officially allowed, the short-

selling volume increased exponentially but decreased again

after 2015, although the pilot program was expanded to

950 firms at the end of 2016. Although there is no broad

consensus, many academics agree that short-selling helps

price discovery, rendering markets more efficient ( Saffi and

Sigurdsson, 2011 ). While most of the studies on factor in-

vesting in US and European markets relies on long-short

strategies, such a strategy is less realistic for the Chinese

market. Hence, we also analyze long-only portfolios, which

are more relevant from a practitioner’s viewpoint. 

Currently, there is no large database of factor returns

available for the Chinese market. Therefore, we contribute

to the research on empirical asset pricing in China by
2 See, World Development Indicators (2020) . According to the 2018 

yearbook of the Shanghai Stock Exchange, retail investors generated a 

turnover of 82% and a profit of 311 billion yuan (USD 47 billion in annual 

average exchange rate). At the same time, institutional investors gener- 

ated a profit of 1,116 billion yuan (USD 168.6 billion in annual average 

exchange rate). 

2 
building a unique and comprehensive set of factors. 3 In 

total, we collect 1,160 signals for prediction, consisting of 

90 stock-level characteristics, 11 macroeconomic variables, 

and a set of industry dummies. In a first step, we construct 

a set of factors in the same way as has been constructed 

for the US market. In a second step, we follow previous 

studies by adapting some of these US factors for the Chi- 

nese stock market. In a third step, we also include a set of 

China-specific factors. For instance, we add the abnormal 

turnover ratio ( atr ), introduced by Pan et al. (2015) . The atr 

is designed to capture the impact of speculative trading 

in the stock market, which helps explain the Chinese 

A-shares’ overpricing. 

Given that China has been experiencing a highly dy- 

namic development through a series of structural breaks, 

implementing various financial reforms, and expanding 

its capital markets’ openness, we conjecture that highly 

flexible methods are required to account for the Chi- 

nese market’s specificity. Therefore, we rely on different 

machine learning techniques for our analysis, whose ap- 

plication to finance and economics is rapidly emerging 

and has witnessed an explosion of research contributions, 

with encouraging results. A rapidly growing number of 

studies examine the cross-section and the time-series of 

stock returns with machine learning tools, predominantly 

focusing on the U.S. market. 

In this study, we build on the work of 

Gu et al. (2020) who combine a broad repertoire of 

machine learning methods with modern empirical asset 

pricing research to understand the dynamics of market 

risk premia for stock returns. 4 Their results suggest that 

machine learning improves the description of expected 

return and, when applied to portfolio construction, perfor- 

mance improvements arise most prominently among the 

more sophisticated models and are due in large part to 

the allowance of non-linear predictor interactions that are 

missed by simpler methods. It is unclear whether these 

results also hold for the Chinese stock market. However, 

given its characteristics mentioned above, especially the 

large proportion of small investors with speculative short- 

term behavior, this market makes a highly attractive target 

for the application machine learning techniques. 

Exploring the different machine learning methods’ 

predictive ability, we find that neural networks robustly 

outperform other methods in terms of out-of-sample R 

2 . 

The out-of-sample R 

2 are particularly large for the sub- 

samples of small firms and non-state-owned firms. Hence, 

predictability is more significant for those subsamples of 

stocks in which retail traders play a much bigger role. 

Moreover, comparing the out-of-sample R 

2 with studies 

in the US market, the Chinese market reveals substantially 

more predictability. As the out-of-sample R 

2 has some 
3 The data can be obtained from the authors upon request. 
4 Their dataset includes 94 characteristics for each stock, each charac- 

teristic’s interactions with eight aggregate time-series variables, and 74 

industry sector dummy variables, totaling more than 900 baseline signals 

for prediction. Recently, numerous additional refinements of the basic al- 

gorithms surveyed in Gu et al. (2020) have been suggested. Examples 

include Bryzgalova et al. (2019) , Chen et al. (2019a) , Feng et al. (2019) , 

De Nard et al. (2020) , Gu et al. (2021) . 

http://wdi.worldbank.org/views/download/FileDownloadHandler.ashx?filename=5.4_Stock_markets.pdf%26filetype=pdf
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limitations for model selection, we analyze the models’

conditional predictive ability using a statistical test de-

veloped in Li et al. (2020) , which allows us to compare

the performance of machine learning methods in different

macroeconomic environments. Again, the neural networks

prove robust to this new statistical test and emerge as the

best-performing method in terms of predictability. 

In our empirical analysis, we make the following obser-

vations. The most relevant variables across all prediction

models are stock characteristics that relate to market liq-

uidity. The second important group of predictors, however,

relate to fundamental factors like valuation ratios. This

finding is in contrast to Gu et al. (2020) ’s previous study

for the US market, where classical trend indicators are the

main drivers of predictability. However, we find notable

differences across models. In particular, in addition to

liquidity, neural networks tend to favor momentum and

volatility factors over fundamentals. We also find that the

predictability of SOEs in terms of out-of-sample predictive

R 

2 is weaker than for non-SOEs at a monthly prediction

horizon, which confirms the SOE’s reputation of being

non-transparent ( Piotroski et al., 2015 ). Lastly, given the

short-selling constraints in China, we wonder how much

value-added can be enjoyed in long-only mandates. Many

of the results in previous studies relate to the performance

of portfolios that include long and short positions. While

such practices allow us to evaluate a signal’s predictive

power, not all stocks are available for shorting at all times,

and the costs of shorting can be substantial. This is even

more true for the Chinese market. Our results also indicate

that a long-only portfolio can provide substantial and,

even after including transaction costs, economically signif-

icant performance. Moreover, this strategy also performs

well during the 2015 crash and remains unaffected by the

COVID-19 pandemic in early 2020. 

The remainder of the paper is structured as follows. In

Section 2 , we provide a description of our data and the

methodologies used for prediction. We present our em-

pirical analysis in Section 3 . We look at the out-of-sample

predictability, and discuss which predictors matter most.

We also perform a model selection analysis using both

the unconditional and conditional predictive ability tests.

In Section 4 , we explore whether predictability translates

into portfolio gains. We conclude in Section 5 . Detailed

discussions of the methods used and additional results are

in the Internet Appendix. 

2. Data and methodology 

For our analysis, we apply the empirical design of

Gu et al. (2020) to the Chinese market. To this end, we

obtain daily and monthly total stock returns for all A-share

stocks listed on the Shanghai and Shenzhen stock ex-

changes from the Wind Database, the largest financial data

provider in China. The corresponding quarterly financial

statement data are downloaded from the China Stock

Market and Accounting Research (CSMAR) database. Our

data sample covers more than 3,900 A-share stocks traded

from January 20 0 0 to June 2020. Also, we obtain the yield

rate for the one-year government bond in China from
3 
CSMAR to proxy for the risk-free rate, which is necessary 

for calculating individual excess returns. 

With these data at hand, we build a large collec- 

tion of stock-level predictive characteristics based on 

the variable definitions in the original papers listed in 

Green et al. (2017) , and the papers on China-specific 

factors. Our collection includes 94 characteristics in 

total, among which 86 have been documented in 

Green et al. (2017) , four are valid China-specific fac- 

tors identified in previous studies, and four are binary 

variables that indicate ownership types for listed firms 

and are used for subsample analysis. To avoid outliers, we 

cross-sectionally rank all continuous stock-level charac- 

teristics period-by-period, and map them into the [ −1 , 1] 

interval following Kelly et al. (2019) and Gu et al. (2020) . 

In terms of data frequency, 22 stock-level characteristics 

are updated monthly, 51 are updated quarterly, six are 

updated semi-annually, and 15 are updated annually. It 

is noteworthy that our data frequency is higher than that 

in Gu et al. (2020) , which may improve our prediction 

performance. Also, we include 80 industry dummies based 

on the Guidelines for Industry Classification of Listed 

Companies issued by the China Securities Regulatory Com- 

mission (CSRC) in 2012. Table C.1. in the Internet Appendix 

provides a summary of all stock-level characteristics. 

In addition to the above characteristics, we also con- 

struct 11 macroeconomic predictors based on the data 

downloaded from CSMAR and the National Bureau of 

Statistics websites. Eight of those variables are based on 

the variable definitions in Welch (2008) , including divi- 

dend price ratio ( dp ), dividend payout ratio ( de ), earnings 

price ratio ( ep ), book-to-market ratio ( bm ), net equity 

expansion ( nits ), stock variance ( svar ), term spread ( tms ), 

and inflation ( infl). The remaining three include monthly 

turnover ( mtr ), M2 growth rate ( m2gr ), and international 

trade volume growth rate ( itgr ), which are identified in 

previous studies as effective macroeconomic predictors. In 

Table C.5 in the Internet Appendix, we summarize these 

macroeconomic variables. 

Throughout our analysis, we adopt a general additive 

prediction error model to describe the relation between a 

stock’s excess return and its corresponding predictors, i.e., 

r i, t+1 = E t [ r i, t+1 ] + εi, t+1 . (1) 

In addition, we further assume the conditional expectation 

of stock i ’s excess return r i, t+1 given the information 

available at period t to be a constant function of a set of 

predictors: 

E t [ r i, t+1 ] = g(z i,t ) , (2) 

where z i,t is a P -dimensional vector of predictors, stocks 

are indexed by i = 1 , ..., N t , and months by t = 1 , ..., T . The

functional form of g(·) is left unspecified. Our target is to 

search for the prediction model from a set of candidates 

that gives the best prediction performance. 

The vector of predictors, z i,t , consists of stock i ’s 

characteristics, the interaction terms between stock-level 

characteristics and the 11 macroeconomic predictors, and 
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5 In our study, we set the tuning parameter to M = 1 . 35 , following the 

suggestion in Huber (2004) , which can produce as much robustness as 

possible while remaining efficient for normally distributed data. 
a set of dummy variables, which can be represented as: 

z i,t = 

( 

c i,t 
x t � c i,t 

d i,t 

) 

, (3)

where c i,t is a 90 × 1 vector of stock-level characteristics,

x t is a 11 × 1 vector of macroeconomic predictors, d i,t is

a 80 × 1 vector of dummy variables, and � denotes the

Kronecker product. The set of dummy variables include

the 80 industry dummies. Hence, the total number of

covariates in z i,t is 90 × (11 + 1) + 80 = 1,160. 

In total, we consider 11 machine learning methods,

along with two simple linear models. In particular, we

include ordinary least squares (OLS) regression, OLS using

only size, book-to-market, and momentum as predictors

(OLS-3), partial least squares (PLS), least absolute shrink-

age and selection operator (LASSO), elastic net (Enet),

gradient boosted regression trees (GBRT), random forest

(RF), variable subsample aggregation (VASA), and neural

networks with one to five layers (NN1-NN5). Similar to

Gu et al. (2020) , we only focus on OLS, OLS-3, LASSO,

Enet, and GBRT equipped with a Huber loss function to

avoid potential disturbance caused by extreme values in

the data ( Huber, 2004 ). 

We follow the standard approach in the literature

for hyperparameters selection, model estimation, and

performance evaluation. In particular, we divide our data

into three disjoint periods while maintaining the temporal

ordering: the training sample (20 0 0–20 08), the validation

sample (2009-2011), and the testing sample (2012–2020).

We use the training sample to estimate the model param-

eters subject to some pre-specified hyperparameters for a

specific machine learning model. The validation sample is

used to optimize the hyperparameters of our models. We

select the hyperparameters that minimize the objective

loss function based on the observations in the validation

sample. The testing sample contains the next 12 months of

data right after the validation sample. These data, which

never enter into model estimation or tuning, are used to

test our models’ prediction performance. Since machine

learning models are computationally intensive, we adopt a

sample splitting scheme as in Gu et al. (2020) by refitting

prediction models annually instead of monthly. When we

refit a model, we increase the training sample size by one

year but maintain the same size for the validation sample.

Meanwhile, both the validation sample and the one-year

testing period are kept rolling forward to include the

next twelve months. Table A.2 in the Internet Appendix

provides further details on hyperparameters training and

prediction models. 

3. Empirical analysis 

We start by exploring our models’ prediction per-

formance via out-of-sample predictive R 

2 and discuss

predictability across different subsamples. 

3.1. Out-of-sample predictability 

As in Gu et al. (2020) , we rely on the non-demeaned

out-of-sample predictive R 

2 to have a direct comparison
4 
with their results for the US market. For a given model S, 

this measure is defined as: 

R 

2 
oos ,S = 1 −

∑ 

(i,t) ∈T (r i,t − ˆ r (S) 
i,t 

) 2 ∑ 

(i,t) ∈T r 
2 
i,t 

, (4) 

where T denotes the set of predictions that are only as- 

sessed on the testing sample, and { ̂ r i,t } (i,t) ∈T are predicted 

monthly returns. As state-owned enterprises (SOEs) play 

an prominent in China’s capital markets and are often crit- 

icized for information transparency, we explore the R 

2 
oos 

for both SOEs and non-SOEs. As Liu et al. (2019) argue, 

the smallest 30% of firms often serve as potential shells in 

reverse mergers that circumvent tight IPO constraints. At 

the same time, Chinese retail investors have a notorious 

preference for investing in small stocks, in particular 

growth and glamour stocks ( Ng and Wu, 2006 ). Therefore, 

to address potential behavioral stories, we also build two 

subsamples according to firm size with a 30% cutoff level. 

The results for the different models and subsamples are 

summarized in Table 1 . 

3.1.1. Full sample analysis 

When we include all companies, the OLS model 

achieves a positive R 

2 
oos of 0 . 81% , showing even the sim- 

plest model still has some predictive power. The R 

2 
oos for 

the OLS-3 model is slightly lower than that for the OLS 

model ( 0 . 77% v.s. 0 . 81% ), indicating the three covariates 

alone (size, book-to-market, and momentum) are insuffi- 

cient to account for all predictive power in linear models. 

It is noteworthy that the OLS model performs much better 

in China’s stock market than in the US stock market. The 

R 

2 
oos for the latter is negative (−3 . 46%) in Gu et al. (2020) . 

A possible explanation for such difference is that we set a 

relatively small value for the Huber loss function’s tuning 

parameter, which leads to a high level of robustness to 

extreme values in the data. 5 

For regularized models including PLS, LASSO, and Enet, 

the improvement of the R 

2 
oos directly reflects the effec- 

tiveness of dimension reduction when we are faced with 

a large set of covariates. All three models raise the out- 

of-sample R 

2 to above 1% , with LASSO ( 1 . 43% ) and Enet 

( 1 . 42% ) having a small advantage over PLS ( 1 . 28% ). This 

improvement of R 

2 
oos thus suggests that some stock char- 

acteristics are redundant for predicting monthly returns 

in China’s stock market, which resonates well with the 

findings in Gu et al. (2020) for the US market. The R 

2 
oos for 

VASA is comparable to those of regularized linear models. 

This observation is most likely because we use VASA with 

linear submodels, which shares many similarities with PLS 

regarding forming a linear combination of predictors. 

The tree models, GBRT and RF, and five neural network 

models improve R 

2 
oos even further to above 2% in all seven 

models. Such improvement demonstrates the superiority 

of machine learning methods in capturing complex in- 

teractions between predictors, which is emphasized for 

the US stock market in Gu et al. (2020) . The full-sample 
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Table 1 

Monthly out-of-sample predictive R 2 in percentage. This table reports monthly out-of-sample predictive R 2 of forecast models for different subgroups of 

firms: (1) the full sample; (2) the sample excluding firms with bottom 30% market values; (3) the sample including only the firms with the 30% bottom 

market values; (4) the sample including firms with top 70% average market capitalization per shareholder; (5) the sample including only the firms with 

the bottom 30% average market capitalization per shareholder; (6) state-owned-enterprises; and (7) non-state-owned-enterprises. The models considered 

include ordinary least squares (OL S) regression, OL S using only size, book-to-market and momentum (OLS-3), partial least squares regression (PLS), least 

absolute shrinkage and selection operator (LASSO), elastic net (Enet), gradient boosted regression trees (GBRT), random forest (RF), variable subsampling 

aggregation (VASA), and neural networks with 1 to 5 layers (NN1-NN5). “+ H” indicates that the model is trained using Huber loss instead of l 2 loss. SOE 

and Non-SOE represent the subgroups of state-owned and non-state-owned enterprises, respectively. All the numbers are expressed as a percentage. 

OLS OLS-3 PLS LASSO Enet GBRT RF VASA NN1 NN2 NN3 NN4 NN5 

+ H + H + H + H + H 

All 0.81 0.77 1.28 1.43 1.42 2.71 2.44 1.37 2.07 2.04 2.28 2.49 2.58 

Top 70% −0 . 89 0.23 0.56 0.55 0.36 −0 . 38 −0 . 04 0.34 0.41 0.51 0.74 0.47 0.72 

Bottom 30% 1.33 1.57 2.35 2.74 3.00 7.27 6.10 2.90 4.52 4.32 4.57 5.50 5.33 

A.M.C.P.S. Top 70% 0.47 1.31 0.55 1.36 1.53 1.39 1.69 1.41 1.72 1.67 2.01 1.96 2.03 

A.M.C.P.S. Bottom 30% 1.49 −0 . 31 7.08 1.12 1.22 1.48 3.93 1.29 2.78 2.79 2.84 3.56 3.67 

SOE −0 . 06 0.52 0.68 0.85 0.79 0.01 0.80 0.75 1.10 1.18 1.28 1.30 1.68 

Non-SOE 1.12 0.87 1.50 1.64 1.65 3.67 3.02 1.60 2.41 2.35 2.64 2.92 2.90 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6 The main results in this subsection are not sensitive to the choice of 

classification threshold. In addition to the 0.7 quantile, we also investigate 

the 0.9, 0.8, and 0.6 quantiles, which generate the same pattern of model 

predictability. These results are not presented for the sake of simplicity 

but are available upon request. 
R 

2 
oos suggests that both GBRT and RF are competitive with

neural networks. Unlike the US stock market, we observe

an increase in the R 

2 
oos when increasing hidden layers in

neural networks, although such improvement seems to be

marginal for models with more than four layers. 

In addition, in terms of monthly R 

2 
oos , machine learn-

ing techniques reveal much stronger predictability in

the Chinese market than in the US market. The high-

est R 

2 
oos in the Chinese market, produced by our GBRT

( 2 . 71% ), is almost sevenfold of the highest R 

2 
oos reported

in Gu et al. (2020) generated by their NN4 ( 0 . 40% ). In

addition, even the lowest R 

2 
oos , produced by OLS-3 based

on all Chinese stocks ( 0 . 77% ), is nearly double the highest

R 

2 
oos in the US market. 

Such significant gaps in R 

2 
oos further motivates us to

consider the fundamental difference between these two

markets, which we conjecture, can be attributed to two

critical aspects. First, the Chinese stock market is char-

acterized by a large fraction of retail investors and their

preference for small-cap stocks. Second, the Chinese stock

market is influenced by the prevalence of SOEs, which are

less transparent than private firms. We next explore these

two channels separately. 

3.1.2. Small and large stocks 

To investigate the potential heterogeneity in model

predictability, we conduct subgroup analysis for small (the

bottom 30% stocks by market equity each month) and large

(the top 70% stocks each month) stocks. Table 1 reports

the R 

2 
oos for the largest 70% stocks and smallest 30% stocks

by monthly market equity. The results in Table 1 suggest

that all models have a much better predictive performance

for small stocks. The linear models, OLS and OLS-3, now

raise their R 

2 
oos to above 1% , while the regularized linear

models, including PLS, LASSO, and Enet, nearly double

their performance. 

The tree-based models and neural networks still keep

an advantage over regression-based methods. GBRT seems

to be especially successful, with the highest R 

2 
oos of 7 . 27% .

While predictability improves drastically for the 30%

smallest stocks, the predictability for the 70% largest

stocks deteriorates. The out-of-sample R 

2 s reduce to below

1% for all models. Interestingly, OLS, RF, and even GBRT,
5 
now have negative R 

2 
oos , indicating they are easily domi- 

nated by a naïve forecast of zero returns for all stocks in 

all periods. However, the neural networks still show stable 

performance, except for some on par with regularized 

linear models (PLS and LASSO). 

3.1.3. Small and large shareholders 

The above results indicate that machine learning 

methods can strongly predict the monthly returns of 

small stocks. However, it is still unclear whether retail 

investors play an important role in generating such a 

difference. To provide insight on the connection between 

predictability and retail investors, we conduct subgroup 

analysis based on the average market capitalization 

per shareholder. We collect numbers of shareholders 

of outstanding A-shares for all listed companies from 

CSMAR, which are reported quarterly, and the cor- 

responding market capitalization. Then, we calculate 

the average market capitalization per shareholder, i.e., 

A.M.C.P.S. = Market Cap / Number of Shareholders , and 

classify all stocks into two groups based on the top 70% 

threshold. 6 And last, we investigate model predictability 

by looking into the out-of-sample R 

2 for these two groups. 

The fourth and fifth rows in Table 1 report the R 

2 
oos 

for firms with the top 70% and the bottom 30% average 

market cap per shareholder, respectively. Overall, these 

results show that machine learning methods, especially 

PLS, random forests, and neural networks, have better 

predictive performance in the sample of stocks with small 

shareholders, as their R 

2 
oos are substantially larger for 

stocks with small shareholders than large shareholders. At 

the same time, LASSO, Enet, and VASA perform similarly 

on both subsamples. Interestingly, OLS-3 generates much 

worse predictions in the sample of small-shareholder 

stocks than large-shareholder stocks, which implies that 

the conventional three-factor model might not work well 

for small-shareholder stocks in China. In brief, even though 
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it is infeasible to accurately identify the prevalence of re-

tail investors for every stock due to the lack of data, we

believe the average market capitalization per shareholder

could still be a useful proxy, which helps to unveil the

relation between model predictability and the role of retail

investors. 

3.1.4. SOEs and non-SOEs 

When we focus on the stock returns of SOEs and

non-SOEs, Table 1 suggests that neural networks produce

robust and positive R 

2 
oos for both subsamples. 7 For tree-

based models, the results are mixed. While they perform

exceptionally well for non-SOE stocks, they fail to out-

perform regression-based models for SOE stocks. Overall,

the pattern of R 

2 
oos for SOE and non-SOE stocks resembles

the one from our analysis of 30% smallest and 70% largest

companies. This similarity arises, in part, from the fact

that SOEs in China tend to have a large market capitaliza-

tion, as they usually represent the dominant companies

in fundamental industries like banking, infrastructure, and

military. Therefore, company size is strongly correlated

with the notion of SOE and non-SOE stocks. 

Nevertheless, comparing the level of predictability, we

see that, when using neural networks, SOEs provide a

much larger R 

2 
oos than the top 70% companies. For the for-

mer subgroup, the average R 

2 
oos for models NN1 to NN5 is

1.31, while for the latter, it is only 0.57. What also strikes

us is that, for SOEs, neural networks are consistently

better than all other models. For all other subgroups, we

always find some models that are performing comparably

with neural networks. This observation underlines the

uniqueness of SOEs again. It seems that predicting SOEs’

returns requires a highly flexible method that can account

for nonlinear effects. This additional complexity may be

required since SOEs are controlled by the state, having

two primary objectives: to generate profit and to carry out

state policies. However, our results contrast with earlier

studies that argue that predicting stock returns for Chinese

SOEs is not easy due to their financial opacity and low

informativeness of share prices (e.g., Lee and Wang (2017) ).

Based on the above subsample analysis, we conclude

that machine learning techniques, especially tree models

and neural networks, perform satisfactorily in the Chinese

stock market in terms of out-of-sample R 

2 . Moreover,

our analysis unveils two important Chinese stock mar-

ket features that differ from the US market studied in

Gu et al. (2020) . First, monthly returns of small (non-SOE)

stocks in the Chinese market can be much better predicted

than large (SOE) stocks for almost all models. Second,

neural networks can provide robust performance (in terms

of R 

2 
oos ) across different subsamples. 

3.1.5. Predictability at annual horizon 

Next, we investigate the prediction performance of

our models at the annual horizon. Table 2 reports the

annual out-of-sample predictive R 

2 for different models
7 As our testing sample spans from 2012 to 2020, we report the fraction 

of SOEs year by year during this period. The fractions of SOEs are 40 . 62% , 

39 . 95% , 38 . 79% , 37 . 03% , 34 . 88% , 31 . 53% , 30 . 19% , 29 . 59% , and 28 . 59% dur- 

ing the 2012–2020 period, respectively. 

6 
and subsamples. We find that the annual out-of-sample 

R 

2 s are higher than their monthly counterparts, indicating 

machine learning methods can successfully isolate per- 

sistent risk premiums at longer horizons. Interestingly, 

with the given methods, we now obtain a better predic- 

tion performance for the largest 70% stocks than for the 

smallest 30% stocks. The improved predictability of larger 

stocks could be caused by the improved predictability 

of SOEs. According to Jiang and Kim (2020) , SOEs cur- 

rently account for roughly one-third of firm numbers but 

two-thirds of market capitalization. In addition, the same 

pattern also appears in subgroups with different levels 

of average market cap per shareholder, as all methods 

generate better predictions in the subsample of large- 

shareholder stock than in the sample of small-shareholder 

stock. 

Our finding contrasts our previous observation made on 

a monthly level, where the small stocks, small-shareholder 

stocks, and the non-SOE firms exhibit considerably 

stronger predictability than their counterparts. The differ- 

ences in predictability on an annual horizon are not as 

large and seem to level out, but they indicate some advan- 

tage for large firms, stocks with larger shareholders, and 

SOEs. We attribute the short-term predictability, particu- 

larly for small stocks, to retail investors’ prominent role in 

the Chinese stock market. As shown in Section 3.4 , neural 

networks put more weight on volatility and momentum- 

related variables for small stocks, which may reflect the 

short-term speculative behavior of retail investors, together 

with their well-known preference for trading small stocks. 

In Table 3 , we compare the average monthly and annual 

out-of-sample predictive R 

2 for different subsam ples, and 

we compare our results with those of Gu et al. (2020) for 

the US market. For firms with the top 70% market values, 

we find comparable predictability at the monthly level, as 

is the case for the top 1,0 0 0 companies in the US market. 

Simultaneously, the out-of-sample R 

2 for SOEs, which are 

usually large stocks, is more than double the value for 

large US stocks. Strikingly, for small Chinese stocks, we 

observe an out-of-sample R 

2 that is ten times higher than 

for the US small stocks. For US stocks, predictability seems 

to improve more for small stocks than for large stocks 

when moving from a monthly to an annual time horizon. 

The opposite is true for the Chinese market. Predictability 

for large stocks, stocks with larger stockholders, and SOEs, 

in particular, is much better than for small stocks, stocks 

with small stockholders, and non-SOEs. These observations 

reveal some striking differences between the Chinese 

market and the US market, which we suspect are mainly 

due to retail investors’ dominant effect on the short hori- 

zon and government initiatives, which can predominantly 

benefit SOEs. 

In the Internet Appendix D, we explore the time vari- 

ations in the out-of-sample R 

2 
oos of our models. For most 

models, we observe in Fig. D.1 a significant drop in R 

2 
oos 

in 2018. We conjecture that the cause of this drop lies in 

the Chinese stock market’s persistent fall caused by the 

severe trade conflicts between China and the US, pointing 

out a potential weakness for machine learning techniques 

when predicting stock returns: their performances can be 

vulnerable to unexpected systematic risk, such as, in this 
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Table 2 

Annual out-of-sample predictive R 2 in percentage. This table reports annual out-of-sample predictive R 2 of forecast models for different subgroups of 

firms: (1) the full sample; (2) the sample excluding firms with bottom 30% market values; (3) the sample including only the firms with the 30% bottom 

market values; (4) the sample including firms with top 70% average market capitalization per shareholder; (5) the sample including only the firms with 

the bottom 30% average market capitalization per shareholder; (6) state-owned-enterprises; and (7) non-state-owned-enterprises. The models considered 

include ordinary least squares (OL S) regression, OL S using only size, book-to-market and momentum (OLS-3), partial least squares regression (PLS), least 

absolute shrinkage and selection operator (LASSO), elastic net (Enet), gradient boosted regression trees (GBRT), random forest (RF), variable subsampling 

aggregation (VASA), and neural networks with 1 to 5 layers (NN1-NN5). “+ H” indicates that the model is trained using Huber loss instead of l 2 loss. SOE 

and Non-SOE represent the subgroups of state-owned and non-state-owned enterprises, respectively. All the numbers are expressed as a percentage. 

OLS OLS-3 PLS LASSO Enet GBRT RF VASA NN1 NN2 NN3 NN4 NN5 

+ H + H + H + H + H 

All 3.22 3.27 3.51 4.47 4.33 4.53 4.15 4.19 4.26 5.39 5.21 5.17 5.24 

Top 70% 3.74 4.23 4.18 5.30 5.20 5.23 4.61 4.95 7.17 5.68 5.79 5.80 6.48 

Bottom 30% 3.46 3.73 3.80 4.74 4.59 4.92 3.92 4.40 6.54 5.36 5.47 5.48 6.02 

A.M.C.P.S. Top 70% 3.96 3.42 4.91 4.02 4.66 4.67 4.77 4.34 4.98 5.78 5.51 6.06 6.33 

A.M.C.P.S. Bottom 30% 0.59 2.40 3.05 1.50 3.75 2.97 1.75 3.60 1.45 3.87 4.02 1.72 1.06 

SOE 4.71 5.80 5.84 6.98 6.89 5.81 6.53 6.57 8.98 6.87 6.82 7.20 8.18 

Non-SOE 3.08 3.12 3.09 4.10 3.99 4.77 3.22 3.80 5.88 4.87 5.07 4.87 5.32 

Table 3 

Average out-of-sample predictive R 2 in percentage for NN1 to NN5. This table reports the average out-of-sample predictive R 2 for the neural networks 

NN1 to NN5 for different subgroups of firms: (1) the sample including only the firms with the 30% bottom market values; (2) the sample excluding firms 

with bottom 30% market values; (3) the sample including the firms with the bottom 30% average market capitalization per shareholder; (4) the sample 

including firms with the top 70% average market capitalization per shareholder; (5) non-state-owned-enterprises; (6) state-owned-enterprises. In addition, 

we add the corresponding numbers for the top and bottom 1,0 0 0 companies for the US market as analyzed in Gu et al. (2020) , their tables 1 and 2. All 

the numbers are expressed in percentage values. The numbers in parentheses are the average out-of-sample predictive R 2 for all models, excluding OLS. 

Bottom 30% Top 70% Small-shareholder Large-shareholder Non-SOE SOE US bottom US top 

Monthly 4.85(4.18) 0.57(0.37) 3.13(2.62) 1.88(1.55) 2.64(2.26) 1.31(0.91) 0.44(0.36) 0.62(0.41) 

Annual 5.77(4.91) 6.18(5.39) 2.42(2.60) 5.73(4.95) 5.20(4.34) 7.61(6.87) 4.37(4.68) 4.30(3.34) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

case, the political risk related to a trade war between the

US and China. 

3.2. Which predictors matter? 

Given the large number of predictors, we next in-

vestigate whether certain predictors are more important

than others. To this end, we differentiate between the

macroeconomic variables and the stock characteristics. 

3.2.1. Macroeconomic variables 

We first explore the variable importance of 11 macroe-

conomic variables and 94 stock characteristics for all

prediction models based on the Chinese stock mar-

ket. The variable importance is defined similarly as in

Gu et al. (2020) , i.e., for a specific model, we calculate

the reduction in predictive R 

2 when setting all values of

a given predictor to zero within each training sample, and

average them into a single importance measure for each

predictor. 

Table 4 reports the relative variable importance of our

11 macroeconomic variables. For PLS, ntis , which measures

the level of issuance activity, has the largest variable

importance. China has been adopting an approval-based

IPO system ever since its stock market opened, and it is

well-known that the China Securities Regulatory Com-

mission often suspends or reduces the volume of IPOs

when the market is down, making it reasonable for ntis

to play an important role in predicting monthly returns.

It is worth noting that ntis is also the most important

macroeconomic variable for GBRT and the second impor-

tant variable for neural networks. Moreover, PLS also puts
7 
substantial weight on infl, m2gr , and itgr , showing these 

macroeconomic variables are also influential. 

The results in Table 4 suggest that penalized linear 

models, including LASSO and Enet, strongly favor the 

aggregate book-to-market ratio ( bm ), which is, however, 

less important for PLS and VASA. In addition, variables 

like infl, ntis , and m2gr also have high priority in LASSO 

and Enet. Differing from other models, VASA favors the 

aggregate earnings price ratio ( ep ), as well as variables 

that reflect market liquidity ( mtr ) and volatility ( svar ). 

The distribution of macroeconomic variable importance 

for tree models GBRT and RF is relatively more uniform 

than other regression-based methods, indicating that these 

two methods can detect potentially complicated nonlinear 

interactions between macroeconomic variables and stock 

characteristics. 

In Fig. 1 , we aggregate the variable importance across 

models for each of the macroeconomic variables. Overall, 

we find that infl and ntis are the two most influential 

macroeconomic variables for predicting monthly returns 

in China’s stock market, especially for neural networks. 

On the other hand, the dividend price ratio ( dp ), market 

volatility ( svar ), aggregate earnings per share ( ep ), term 

spread ( tms ), and market liquidity ( mtr ) are less important, 

as they are overlooked by most models. 

3.2.2. Stock characteristics 

Not all of our stock characteristics are equally impor- 

tant in predicting stock returns, and their importance 

may depend strongly on the prediction model. To get an 

overview, Fig. 2 illustrates the overall importance of all 

characteristics based on the pooled full sample. We order 
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Fig. 1. Variable importance for eleven macroeconomic variables. This figure illustrates a box plot for the relative variable importance in Table 4 aggregated 

for each of the eleven macroeconomic variables. 

Table 4 

Relative variable importance of macroeconomic variables. This table reports the R 2 -based variable importance for macroeconomic variables in each model. 

For a given model, the sum of variable importance is normalized to one. All values are in percentage. 

PLS LASSO Enet GBRT RF VASA NN1 NN2 NN3 NN4 NN5 

+ H + H + H 

dp 0.00 8.65 4.07 9.11 9.44 1.34 2.17 2.96 3.31 4.01 1.63 

de 0.00 1.06 1.78 9.40 8.59 1.32 5.46 5.86 5.28 6.57 5.78 

bm 1.06 34.33 26.24 8.97 8.34 0.00 8.46 7.23 5.99 7.99 9.53 

svar 0.00 0.00 0.13 7.76 8.86 15.88 2.12 2.93 3.23 3.97 1.59 

ep 0.00 0.68 0.98 8.09 9.86 46.41 2.14 2.94 3.21 3.99 1.59 

ntis 41.19 14.54 14.37 12.30 9.12 0.00 18.35 18.78 20.01 16.36 17.60 

tms 0.00 0.00 0.52 8.74 9.17 12.86 2.13 2.93 3.31 4.00 1.58 

infl 21.14 21.86 28.63 9.11 11.92 0.00 40.61 38.41 38.16 31.97 39.12 

mtr 0.00 0.00 0.26 9.22 10.22 22.19 2.12 2.95 3.28 4.00 1.58 

m2gr 18.33 16.57 19.12 8.22 7.12 0.00 8.19 7.57 6.63 8.51 9.50 

itgr 18.28 2.32 3.91 9.52 7.36 0.00 8.24 7.44 7.57 8.62 10.50 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

characteristics along the vertical axis by calculating the

sum of the ranks of R 

2 -based variable importance for

every predictor in each model and sorting them from the

highest to the lowest. Such an ordering reflects the overall

contribution of a characteristic to all models. Each column

corresponds to a prediction model, where the color gra-

dient indicates the model-specific importance from the

highest to the lowest important (darkest to lightest). 

With regards to the ordering of overall variable impor-

tance, we find that stock characteristics relating to market

liquidity are most relevant when predicting the Chinese

stock market, namely volatility of liquidity ( std_dolvol

and std_turn ), zero trading days ( zerotrade ), and the illiq-

uidity measure ( ill ) as the most salient predictors. The

second influential group contains fundamental signals

and valuation ratios, such as industry-adjusted change

in asset turnover ( chaotia ), industry-adjusted change in

employees ( chempia ), total market value ( mve ), number

of recent earning increases ( nincr ), industry-adjusted

change in profit margin ( chpmia ), and industry-adjusted

book-to-market ( bm_ia ). The third group consists of risk
8 
measures, including idiosyncratic return volatility ( idiovol ), 

total return volatility ( volatility ), and market beta ( beta ). 

Our finding contrasts those in Gu et al. (2020) for the US 

market. They find that conventional price trend indicators 

are the most influential predictors, which turn out to 

be less important for the Chinese stock market except 

for recent maximum return ( maxret ). This observation 

resonates well with previous studies that apply linear 

factor models to predict the Chinese stock market (e.g., 

Li et al. (2010) ; Cakici et al. (2017) ). Nevertheless, the 

prominent role of fundamental factors surprises us since, 

according to Gu et al. (2020) , these factors turn out to 

be of minor importance for the US market. To be more 

specific, when we take the first three (ten) factors from 

Fig. 5 in Gu et al. (2020) , their average rank in the Chinese 

market would be 41 (34). Hence, the two markets disagree 

substantially on the importance of the predictors. 

Interestingly, the abnormal turnover ratio ( atr ), a China- 

specific factor initially introduced by Pan et al. (2015) to 

capture the impact of prevalent speculative trading, is also 

influential in machine learning models (ranked the third in 
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Fig. 2. Characteristic importance for all models. This figure shows the ordering of all stock-level characteristics ranked by their overall model contribution. 

Characteristics on the vertical axis are ordered based on the sum of their ranks over all models, with the most influential characteristics on the top and 

the least influential on the bottom. Columns correspond to the individual models, and the color gradients within each column indicate the most influential 

(dark blue) to the least influential (white) variables. 

9 
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8 In particular, we condition on six conditioning variables, which can be 

classified into three groups: (1) inflation ( infl) and M2 growth rate ( m2gr ), 

which reflect the overall macroeconomic environment; (2) market-level 

book-to-market ratio ( bm ) and dividend price ratio ( dp ), which measure 

the valuation level; (3) monthly turnover ( mtr ) and stock variance ( svar ), 

which indicate market-level volatility and liquidity. All other CSPA tests 

can be obtained from the authors, together with the analysis of different 

subsamples confirming our main results. 
terms of overall variable importance). Also, the trend factor

introduced by Liu et al. (2020) ( er_trend ) to account for the

persistent trends in price and volume in the Chinese stock

market has the fourth-largest overall variable importance.

It is worth noting that the authors originally introduce

both atr and er_trend to accommodate the influence of a

large amount of active individual investors in the Chinese

stock market on empirical asset pricing. Those individual

investors are known to be more short-term oriented and

trade speculatively, with a contribution of more than 80%

of the total trading volume. Previous studies, such as

Pan et al. (2015) and Liu et al. (2020) , demonstrate the

importance of including China-specific factors in factor

models, while here we provide further evidence that these

factors also have considerable explanatory power in more

complicated machine learning models. 

Similar to Gu et al. (2020) , we also observe that neural

network models (NN1-NN5), regularized linear models

(PLS, LASSO, Enet), and VASA tend to emphasize a similar

set of stock-level predictors. At the same time, the tree-

based models, GBRT and RF, instead put more weight on

a few predictors than others, such as divo, rd , and divi . We

conjecture that such a difference is due to tree models’

generic properties as they randomly choose a subset of

stock characteristics when building decision trees. In this

way, predictors like divo, rd , and divi , can become quite

influential in some decision trees and thus become more

relevant for the whole tree models, while they play a

minor role in all other models. 

From a practical and theoretical viewpoint, we are also

interested in the time variation of the variable importance.

We find that regularized linear models, including PLS,

LASSO, and Enet, share a similar set of relevant predictors,

with liquidity measures and fundamental signals being

the two important groups of predictors. LASSO usually

selects around 20 relevant predictors, and Enet selects

around 35 predictors, indicating many characteristics are,

in fact, redundant. There are only minor time variations

in variable importance for PLS, compared to only about

two-thirds of predictors selected by LASSO and Enet being

stable across different periods. It is interesting to note

that, particularly for LASSO, there seems to be a gap in

variable importance between the periods before and after

2015, indicating a structural change in the stock market.

As is well-known, the Chinese stock market went through

a dramatic boom and a sudden crash in 2015, potentially

explaining this finding ( Liu et al., 2016 ). 

The tree-based models, including GBRT and RF, tend

to select a broader set of characteristics than alternative

models, which has also been observed in Gu et al. (2020) .

Again, liquidity variables and fundamental signals are the

two most important groups of predictors for GBRT and

RF, but their orderings of variables slightly differ from

other models. On the other hand, the time variations of

variable importance for the tree models are relatively low.

Here we also observe a gap in variable importance before

and after 2015, especially for RF, such as ill, idiovol , and

maxret . VASA’s behavior in terms of variable importance

is quite similar to PLS because VASA is built with linear

submodels, except for a higher level of time variations in

variable importance. 
10 
Lastly, neural network models (NN1 - NN5) favor 

liquidity variables, fundamental signals, valuation ratios, 

and China-specific factors including the abnormal turnover 

ratio ( atr ), the trend factor ( er_trend ), and the top-10 

shareholders ownership ( top10holderrate ). Compared to 

other models, neural networks have substantially larger 

time variations in variable importance, indicating they 

can detect and account for the structural breaks in the 

forecasting ability of different predictors. We attribute 

this finding to the flexibility and adaptability of neural 

network models, especially when they are fine-tuned and 

well-trained with a sufficient amount of data. 

3.3. Alternative model selection 

Using the out-of-sample R 

2 for model selection may 

not work well in practice, as some predictive models can 

have close out-of-sample R 

2 s but very different perfor- 

mance in reality. For example, in Table 1 , the GBRT model 

has a slightly larger overall out-of-sample R 

2 than NN4. 

However, this overall performance is mainly driven by 

GBRT’s performance in 2018, while, for example, NN4’s 

prediction performance measured by R 

2 
oos is, in fact, more 

robust than GBRT in most periods (see Fig. D.1 in the 

Internet Appendix D). As an alternative model selection 

method, we first use the unconditional superior pre- 

dictive ability (USPA) test of Hansen (2005) . However, 

within our analysis, we notice that Hansen’s (2005) test 

alone still fails to distinguish some prediction models’ 

performance, which is also the case for the Diebold and 

Mariano (1995) test used in Gu et al. (2020) . To address 

this issue, we further look into the models’ conditional 

predictive ability using the conditional superior predictive 

ability (CSPA) test in Li et al. (2020) , which allows us to 

compare the performance of machine learning methods 

in different macroeconomic environments. See Internet 

Appendix B for a detailed description of both tests. 

Table 5 reports the number of rejections of a given 

model under the USPA and CSPA tests. The USPA test 

results indicate that the naïve OLS model and the modi- 

fied OLS-3 model perform poorly, having the largest total 

number of rejections. The GBRT, RF, NN3, NN4, and NN5 

models have uniformly better unconditional prediction 

performance than their alternatives, but the USPA test 

fails to differentiate their performance. Therefore, we also 

compare the CSPA test results. 8 We observe that NN1, 

NN4, and NN5 have the smallest total number of CSPA 

test rejections. Even though tree models, including RF 

and GBRT, also perform well, their one-versus-all compar- 

isons get rejected when conditioning on the market-level 

stock variance, while NN4 and NN5 can survive the same 

comparison. Also, NN4 and NN5 perform remarkably well 

under most macroeconomic conditions. Hence, the CSPA 
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Table 5 

Comparison of (un)conditional superior predictive ability based on full sample. The first column reports the number of rejections of the one-versus-one 

USPA test for row models at the 5% significance level based on the full sample. The next six columns report similar summary statistics of the conditional 

superior predictive ability tests ( Li et al. (2020) ) for different conditioning variables. For the CSPA tests, the entries report the number of rejections of the 

CSPA tests against the rest 12 competing models for a specific pair of the row model and the column conditioning variable. The last column reports the 

total number of rejections of the CSPA tests. For each entry, an asterisk indicates the rejection of a one-versus-all test at the 5% significance level. 

CSPA Test 

USPA infl m2gr bm dp mtr svar Total 

OLS( + H) 10 ∗ 9 ∗ 11 ∗ 11 ∗ 10 ∗ 9 9 59 

OLS-3( + H) 10 ∗ 8 ∗ 10 ∗ 9 ∗ 10 ∗ 9 ∗ 10 ∗ 56 

PLS 3 ∗ 4 ∗ 5 ∗ 3 5 ∗ 6 ∗ 6 29 

LASSO( + H) 3 ∗ 3 2 1 0 3 4 13 

Enet( + H) 3 0 ∗ 2 1 1 2 5 11 

GBRT( + H) 0 1 0 0 0 1 2 ∗ 4 

RF 0 0 1 0 0 2 ∗ 2 ∗ 5 

VASA 0 3 ∗ 1 0 1 2 6 13 

NN1 0 1 0 0 ∗ 1 1 0 3 

NN2 1 ∗ 2 ∗ 1 ∗ 3 ∗ 3 ∗ 3 ∗ 2 14 

NN3 0 3 0 0 1 ∗ 1 1 ∗ 6 

NN4 0 0 0 0 2 0 0 2 

NN5 0 ∗ 4 0 0 0 0 0 4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

9 The differences in R 2 oos ’s between large and small stocks seems to be 

the most substantial among all the three subgroups. However, we also 

analyzed the relative differences between small stocks and the non-SOEs 

and A.M.C.P.S. Bottom 30%. We find that compared with non-SOEs, the 

small stock category puts considerably more weight on atc and zerotrade . 

Compared to A.M.C.P.S. Bottom 30%, small stocks put more weight on id- 

iovol and volatility . 
test enables us to differentiate the prediction performance

of VASA, NN2, and regularized linear models more com-

prehensively, providing statistical evidence that these

models are less favorable than NN4 and NN5. The Internet

Appendix E.1 shows how the CSPA could be used for an

ex-ante selection of the prediction model when forming

portfolio strategies. 

3.4. Dissecting the predictability performance of NN4 

The previous analysis demonstrates that neural net-

works seem to outperform other models in terms of

predictability. An often mentioned drawback of these

algorithms is their lack of interpretability. Nevertheless, as

a sanity check and to provide some intuition about which

variables are causing the considerable predictability, we

dig deeper into the drivers of the prediction performance.

To this end, we focus on the striking differences in the

monthly and annual R 

2 
oos s for small and large stocks gen-

erated by the NN4 model, as we later will use this neural

net for portfolio analysis. In the following discussion, we

focus on small and large stocks. Similar arguments will

hold for the differences between the other subcategories. 

In Panel A of Fig. 3 , we plot the differences in the 20

most important variables using NN4 to predict the top

70% and the bottom 30% stocks on a monthly horizon. The

three most important variables do not change their order-

ing when we move from large to small stocks: (1) chempia ,

the industry-adjusted change in the number of employees,

is a proxy for a firm’s distress using the industry-adjusted

change in employees, and has been successfully applied

in the US market by ( Asness et al., 20 0 0 ); (2) std_dolvol

measures the standard deviation of daily trading vol-

ume and serves as a proxy for liquidity; and (3) atr is a

China-specific liquidity factor. As Pan et al. (2016) argue,

atr isolates speculative trading from liquidity and other

components in trading volume. Therefore, it performs

well since individual investors contribute to most of the

total trading volume. While all three variables are equally

important for large and small firms at a monthly horizon,
11 
the results in Panel B of Fig. 3 suggest that their influence 

within the two groups goes down at an annual horizon, 

which is entirely in line with intuition. 

While the first three variables are equally important, 

the relative importance for most of the other variables 

changes. In particular, we find that liquidity-related vari- 

ables like zerotrade and std_turnorver obtain more weight 

for small stocks, while fundamental variables like cash, 

nincr, bm_ia , and orgcap obtain less weight. Besides the 

liquidity-related variables, volatility-related variables like 

volatility, idiovol , and max_ret , and the China-specific 

trend variable er_trend obtain more importance. We 

discuss these latter variables next. First, with idiovol 

being a more important predictor for small stocks, our 

results lend support to the theory of limited arbitrage 

(see, e.g., Shleifer and Vishny (1997) ; Wurgler and Zhu- 

ravskaya (20 02) ; Pontiff (20 06) ), which postulates that 

anomalies become stronger for high idiosyncratic risk 

stocks, leading to increased overall predictability. 9 

Second, the fact that max_ret also plays a more promi- 

nent role confirms our conjecture that retail investors 

significantly influence the price dynamics of small stocks. 

As Bali et al. (2011) show, if there is a strong preference 

among investors for assets with lottery-like payoffs, ex- 

treme positive returns exhibit significant predictability 

in the cross-sectional pricing of stocks. Moreover, they 

find that this effect is more prevalent for small stocks 

with extreme positive returns. Hence, their finding nicely 

coincides with our finding of the importance that NN4 

attaches to max_ret . 

Lastly, Liu et al. (2020) show that their China-specific 

trend factor ( er_trend ) works well because it reflects the 
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Fig. 3. Relative variable importance. This figure visualizes the changes in variable importance for the NN4 model. In Panel A, we plot the change in variable 

importance when moving from the top 70% to the bottom 30% stocks for the monthly strategy. In Panel B, we plot the changes with these two groups 

when moving from a monthly to a yearly strategy. The red color denotes a decrease, and the green color denotes an increase in importance. The ordering 

of the variables corresponds to their variable importance for the whole sample of stocks at the monthly prediction horizon. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

11 The ranking of variables under NN4 (and other neural networks) is 
market sentiment measured by the volatility of noise

trader demand, and this effect is enforced by the domi-

nance of retail investors in the Chinese market. Our NN4

model underscores the importance of this China-specific

trend factor for monthly predictions for small stocks.

While these latter variables are related to the influence

of retail investors on monthly predictions, Panel B of

Fig. 3 shows that they become substantially less important

on an annual horizon. Obviously, speculative effects tend

to wash out at longer horizons. 

Panel A of Fig. 3 reveals the general tendency that

under the NN4 model fundamental variables have

less impact on the predictability of smaller stocks.

Nevertheless, the sales-to-price variable sp used in

Barbee et al. (1996) stands out as it obtains more rele-

vance for smaller stocks. 10 Interestingly, the importance

of sp for the Chinese market has also been noticed by

Bin et al. (2017) , where they show that smaller firms with

top-performing stocks tend to have significantly higher

sales-to-price ratios than all other stocks. 

Instead of focusing further on the importance of spe-

cific characteristics, we place different characteristics into

representative categories to avoid analyzing potential

outliers. In Table C.4 in the Internet Appendix, we group

all of our variables into ten different categories related to

liquidity, momentum, ownership, size, volatility, earnings,

beta, book-value ratios, growth, and leverage. Panel A in

Fig. 4 shows that for both large and small stocks, liquidity

measures turn out to be the most crucial driver of monthly

predictability. However, what drives a wedge between the

R 

2 
oos s is the overweighting of volatility and momentum
10 As Fisher (1984) argued, a high sp indicates that the stocks are popu- 

lar with investors, providing buying opportunities. Fisher is an American 

billionaire investment analyst who ran Forbes’ “Portfolio Strategy” column 

from 1984 to 2017, making him the longest continuously-running colum- 

nist in the magazine’s history. 

12 
categories for small stocks and the underweighting of 

market factors ( C_beta ) and fundamentals like ( C_growth 

and C_size ). 11 

Moving from a monthly to an annual forecast horizon, 

we find that liquidity and momentum lose their impor- 

tance in favor of ownership, growth, and leverage. The 

size category seems to become more important for small 

firms. To provide additional insight on the relative differ- 

ences, Panel C in Fig. 4 shows that the relative importance 

differences for annual predictions level off for small and 

large stocks. We identify only some differences in C_bpr 

and C_size . This finding resonates well with the small 

differences in the R 

2 values of small and large stocks for 

annual predictions. 12 

Overall, the importance that the neural network NN4 

gives to the different firm characteristics and their cate- 

gories aligns well with our intuition. Moreover, it helps us 

to rationalize the differences between the predictability of 

small and large stocks. However, the overall predictabil- 

ity of the Chinese stock market still appears substantial 

compared to, for example, the US market. The overall 

predictability in the Chinese market might result from 

short-sale constraints, which are a universal feature of the 

Chinese market. Especially when retail investors dominate, 

these constraints might further enforce predictability and 

potential overpricing, compared to other markets. 
quite different to the average ranking across all prediction models, which 

puts more weight on the fundamental factors. In contrast, neural net- 

works seem to favor momentum and volatility factors over fundamentals. 
12 Note that we find other differences between SOEs and Non-SOEs, and 

the A.M.C.P.S subgroups. For instance, SOEs put more emphasis on C_size 

and C_growth , and less on C_bpr and C_ey relative to non-SOEs. The top 

70% in terms of A.M.C.P.S. put more weight on C_own and C_vol and much 

less on C_beta . 
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Fig. 4. Relative importance of variable categories. This figure visualizes the changes in aggregated variable importance for the NN4 model. We aggregate 

the variables into the categories defined in Table C.4 in the Internet Appendix. Panel A shows the differences between the top 70% and the bottom 30%, and 

Panel B shows the corresponding changes from monthly to yearly predictions. In Panel C, we show the same graph as Panel A but for yearly predictions. The 

red color denotes a decrease, and the green color denotes an increase in importance. The ordering of the variables in Panel A (Panels B and C) corresponds 

to the median rank of the categories’ variable importance for the whole sample of stocks at the monthly (yearly) prediction horizon. Having defined these 

categories, we then sort them according to the median rank in monthly predictions for each category and all stocks. To analyze the differences, we look 

for each category at the two most important variables and how their average changes when we move from large to small stocks. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

13 The China Securities Regulatory Commission (CSRC) introduced mar- 

gin trading and short selling in March 2010. There were only 90 stocks 

available for short-selling initially but had increased to 800 as of July 

2020. However, this number is still small relative to the total number of 

stocks in the Chinese market, which is over 4,0 0 0. 
14 In addition to the value-weighted portfolios, we also consider equally- 

weighted portfolios, whose performance is reported in Table E.6 in 

the Internet Appendix. The results are qualitatively similar to those of 

Table 6 except for slightly higher Sharpe ratios that are mostly driven by 

micro-cap stocks. 
4. Portfolio analysis 

So far, our assessment of prediction performance

has been entirely statistical, relying on comparisons of

out-of-sample predictive R 

2 and two statistical tests.

We next analyze whether this predictability can be ex-

ploited in portfolio strategies that account for short-selling

constraints and other restrictions in the Chinese market. 

4.1. Portfolio sorts 

We consider two types of machine learning portfolios.

The first one is the long-short portfolio, which we con-

struct following the schemes in Gu et al. (2020) . More

precisely, at the end of each month, the one-month-

ahead out-of-sample stock returns are generated for

each method. We then sort stocks into deciles based on

the predicted returns and reconstitute portfolios each

month using value weights. Hence, a zero-net-investment

portfolio we construct by buying the highest expected

return stocks (decile 10) and selling the lowest (decile

1). Even though the long-short portfolio is a useful tool

for evaluating machine learning methods’ portfolio-level

performance, it can hardly be implemented in the Chinese
13 
stock market due to strict short-selling restrictions. 13 We 

thus also include the long-only portfolio, which only holds 

stocks in the top decile. 

Table 6 reports the out-of-sample performance for the 

value-weighted long-short and long-only portfolios. 14 For 

comparative purposes, we also report the performance of 

the 1 /N-portfolio in which all stocks are equally-weighted. 

All machine learning portfolios dominate the OLS-3 

portfolio and the 1 /N-portfolio in terms of average ex- 

pected monthly return, Sharpe ratio, and other measures. 

Overall, the results clearly demonstrate that machine 

learning techniques, especially neural network models, are 

advantageous for portfolio-level forecasts. 

Figure 5 illustrates the evolution of the cumulative 

returns for the three portfolios constructed by different 
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Table 6 

Performance of machine learning portfolios based on the full sample (value-weighted). This table reports the out-of-sample performance measures for all 

machine learning models of the value-weighted long-short and long-only portfolios based on the full sample. All measures are based on 103 monthly 

out-of-sample returns from January 2012 to June 2020. “Avg”: average predicted monthly return ( % ). “Std”: the standard deviation of monthly predicted 

monthly returns ( % ). “S.R.”: annualized Sharpe ratio. “Skew”: skewness. “Kurt”: kurtosis. “Max DD”: the portfolio maximum drawdowns ( % ). “Max 1M Loss”: 

the most extreme negative monthly return ( % ). 

Machine Learning Portfolios 

“1/ N ” OLS-3 PLS LASSO Enet GBRT RF VASA NN1 NN2 NN3 NN4 NN5 

Portfolio + H + H + H + H 

Long-Short 

Avg − 1.80 3.17 3.72 3.79 3.15 2.22 4.49 5.17 4.75 5.50 5.40 5.53 

Std − 6.63 5.34 5.60 5.80 6.52 5.21 6.30 7.21 5.05 5.52 6.43 6.37 

S.R. − 0.94 2.05 2.30 2.27 1.67 1.47 2.47 2.48 3.25 3.45 2.91 3.01 

Skew − 0.58 −0 . 64 0.27 −0 . 63 −0 . 23 −0 . 76 1.21 3.53 1.35 2.49 3.44 2.29 

Kurt − 2.25 1.64 3.04 5.25 0.64 0.45 9.27 24.37 6.56 13.51 21.65 11.88 

Max DD − 45.97 17.57 15.49 29.78 24.21 16.08 16.79 13.54 7.91 5.29 6.29 6.95 

Max 1M Loss − 18.85 17.57 15.49 24.02 18.07 11.90 16.64 12.50 7.91 4.98 4.58 5.82 

Long-Only 

Avg 1.56 2.45 2.74 3.37 3.35 2.59 2.22 4.04 4.23 3.84 4.36 4.50 4.55 

Std 8.44 9.43 6.67 7.79 7.72 6.83 7.16 8.55 9.63 7.72 8.60 9.27 9.69 

S.R. 0.64 0.89 1.42 1.49 1.50 1.31 1.07 1.64 1.52 1.72 1.76 1.68 1.63 

Skew 0.26 0.49 −0 . 12 1.04 0.48 0.16 0.41 1.03 2.09 0.59 1.22 1.41 1.98 

Kurt 1.26 1.36 1.45 4.65 2.11 2.77 1.70 4.81 10.72 2.97 5.98 6.46 10.25 

Max DD 54.20 47.24 33.56 22.61 24.94 35.46 38.83 22.46 21.04 21.20 21.37 21.53 19.88 

Max 1M Loss 25.56 24.66 19.66 20.95 21.42 22.54 18.49 21.22 21.04 20.28 20.34 20.16 19.88 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

methods, along with the market index CSI 300 as a

benchmark. The neural network models dominate their

competitors in all three portfolio types. 15 VASA, despite its

simplicity, proves to be the second-best method, following

NN4 closely. Note that the long-short portfolio for these

two methods performs very well during the stock market

crash in 2015, as indicated by the shaded area. Moreover,

the recent global shock due to the COVID-19 pandemic in

early 2020 does not lead to a notable downturn in port-

folio levels. Neural networks and VASA are followed by

penalized linear models, including LASSO and Enet, which

have very similar performance as these two methods share

much in common, while the performance of the tree mod-

els lags behind. However, all the machine learning portfo-

lios outperform the 1 /N-portfolio and the market index. 

Our results in Fig. 5 and Table 6 confirm the finding

of Gu et al. (2020) that neural networks outperform all

other models considered in their study. For the long-short

portfolios, we obtain substantially higher Sharpe ratios in

the Chinese stock market than those for the US market

found in Gu et al. (2020) . For example, the highest Sharpe

ratio (SR = 3 . 45 ) given by NN3 in the Chinese market

is more than double their best Sharpe ratio (SR = 1 . 35 )

generated by NN4. As discussed above, the long-short

strategy is nearly infeasible due to trading restrictions, so

we are cautious in interpreting these results. At the same

time, the highest Sharpe ratio for the long-only portfolio

is 1.76, still higher than the long-short strategy for the

US market. Given this high level, it is crucial to assess

the performance of the long-only portfolio under more

realistic assumptions. 
15 Here, we only include NN4 in the figure for the sake of simplicity as 

the performance of the other neural network models is very similar. 

14 
4.2. Excluding small stocks 

As a robustness check, we repeat the previous portfolio 

analysis based on the top 70% subsample. There are three 

main reasons for such practice. First, small stocks are well- 

known for their high price volatility in the Chinese stock 

market, making it difficult for investors to find appropriate 

buying points. Second, the bottom 30% stocks often suffer 

the so-called shell-value problem caused by the IPO con- 

straints in China, as documented in Liu et al. (2019) . Third, 

in general, large stocks have higher levels of liquidity and 

lower price volatility and thus are less affected by the 10% 

daily price limits in China. 

Table 7 reports the results. The performance of ma- 

chine learning portfolios based on the top 70% large stocks 

are qualitatively similar to the full sample. However, all 

portfolios achieve lower average monthly returns, Sharpe 

ratios, standard deviations, and extreme negative monthly 

returns because small stocks are excluded. Nevertheless, 

machine learning methods still substantially dominate the 

simple OLS-3 model and the 1 /N portfolio, with neural 

networks performing the best, followed by the regularized 

linear models and the tree models. Therefore, these results 

confirm that machine learning methods also have an 

outstanding portfolio-level predictive power in the Chinese 

stock market. 

4.3. Performance of SOEs 

The results in Table 3 reveal considerable return pre- 

dictability for SOEs, particularly for complex models like 

neural networks. Political connections may boost the 

SOEs’ performance through various channels such as, e.g., 

easier access to bank loans, loose regulations, and lighter 

taxation. At the same time, it is well known that the SOEs’ 
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Fig. 5. Cumulative log return of machine learning portfolios (full sample). This figure shows the cumulative log returns of all portfolios and the CSI 300 

market index. The shaded period corresponds to the 2015 stock market crash in China. All portfolios are constructed based on the full sample and are 

value weighted. In Panel A, the portfolios are based on a long-short strategy. Panel B plots the long-only portfolios. 

 

 

 

 

 

 

 

 

 

 

 

highly concentrated state ownership, their financial opacity

and low informative share prices, and their lack of corpo-

rate governance mechanisms could potentially exacerbate

the crash risk for these firms. Therefore, it is interesting to

examine how the SOEs’ predictability manifests in differ-

ent portfolio strategies’ performance. In Table 8 , we report

the results for the long-short and long-only strategies. 

Given that SOEs are mostly large companies, we com-

pare the results in Table 8 those in Table 7 . First, the

long-short strategy’s performance in terms of the Sharpe

ratio is considerably higher for SOEs than for the top 70%

stocks, especially for neural networks. For NN5, we get a
15 
Sharpe ratio of 4.12 compared to a Sharpe ratio of 2.70 for 

the top 70% stocks. For the long-only portfolio, we note 

that the 1 /N portfolio indeed indicates a larger drawdown 

risk for SOE stocks than for the top 70% stocks (which 

also include SOEs). However, exploiting the predictability 

of SOE returns, we can reduce the maximum drawdown 

for the long-only strategy to levels that are considerably 

below the levels for the largest 70% stocks. At the same 

time, the Sharpe ratios are also higher for the long-only 

SOE portfolio. Therefore, using an appropriate prediction 

algorithm, we can mitigate the concerns of previous 

studies that SOEs generate a larger exposure to crash risk. 
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Table 7 

Performance of machine learning portfolios based on the top 70% sample (value-weighted). This table reports the out-of-sample performance measures 

for all machine learning models of the value-weighted long-short and long-only portfolios based on the Top 70% sample. All measures are based on 103 

monthly out-of-sample returns from January 2012 to June 2020. “Avg”: average predicted monthly return ( % ). “Std”: the standard deviation of monthly 

predicted monthly returns ( % ). “S.R.”: annualized Sharpe ratio. “Skew”: skewness. “Kurt”: kurtosis. “Max DD”: the portfolio maximum drawdowns ( % ). “Max 

1M Loss”: the most extreme negative monthly return ( % ). 

Machine Learning Portfolios 

“1/ N ” OLS-3 PLS LASSO Enet GBRT RF VASA NN1 NN2 NN3 NN4 NN5 

Portfolio + H + H + H + H 

Long-Short 

Avg − 0.88 2.51 2.41 2.37 2.29 1.19 2.88 3.27 3.39 3.73 3.53 3.50 

Std − 5.83 5.17 4.73 5.47 6.28 5.00 4.84 4.41 4.08 4.03 4.79 4.49 

S.R. − 0.52 1.68 1.76 1.50 1.26 0.82 2.06 2.57 2.88 3.21 2.55 2.70 

Skew − 0.23 −0 . 41 −0 . 57 −1 . 10 −0 . 28 −0 . 88 −0 . 61 −0 . 07 0.08 0.18 0.98 0.31 

Kurt − 0.92 1.84 1.26 4.27 1.02 1.95 3.21 0.94 0.90 1.51 3.19 0.44 

Max DD − 53.80 18.29 15.22 30.78 25.69 21.90 17.01 13.54 9.50 6.25 8.59 7.52 

Max 1M Loss − 17.58 18.16 15.22 22.87 19.25 17.82 17.01 11.29 9.50 4.86 8.59 7.52 

Long-Only 

Avg 1.10 1.54 1.93 2.03 1.83 1.62 1.10 2.35 2.26 2.55 2.47 2.60 2.50 

Std 8.17 8.75 6.54 6.84 6.90 6.46 6.84 7.39 7.23 7.14 6.97 7.50 7.58 

S.R. 0.47 0.61 1.02 1.03 0.92 0.87 0.56 1.10 1.08 1.24 1.23 1.20 1.14 

Skew 0.10 0.23 −0 . 14 0.18 0.01 −0 . 37 −0 . 31 0.28 0.11 −0 . 03 −0 . 07 0.15 0.22 

Kurt 1.32 1.10 1.68 1.82 2.27 3.85 3.41 1.68 2.24 1.68 1.67 1.97 1.99 

Max DD 42.48 58.31 37.43 27.87 31.74 48.60 42.80 26.47 32.93 27.84 30.55 32.32 30.67 

Max 1M Loss 26.44 24.80 20.26 22.81 23.46 25.41 26.36 22.76 23.77 22.83 22.31 23.80 23.65 

Table 8 

Performance of machine learning portfolios based on SOEs (value-weighted). This table reports the out-of-sample performance measures for all machine 

learning models of the value-weighted long-short and long-only portfolios based on SOEs. All measures are based on 103 monthly out-of-sample returns 

from January 2012 to June 2020. “Avg”: average predicted monthly return ( % ). “Std”: the standard deviation of monthly predicted monthly returns ( % ). 

“S.R.”: annualized Sharpe ratio. “Skew”: skewness. “Kurt”: kurtosis. “Max DD”: the portfolio maximum drawdowns ( % ). “Max 1M Loss”: the most extreme 

negative monthly return ( % ). 

Machine Learning Portfolios 

“1/ N ” OLS-3 PLS LASSO Enet GBRT RF VASA NN1 NN2 NN3 NN4 NN5 

Portfolio + H + H + H + H 

Long-Short 

Avg − 1.38 3.00 3.39 3.65 3.21 2.13 3.62 4.04 4.16 4.05 4.15 4.48 

Std − 4.88 4.06 3.99 4.19 3.88 3.10 4.53 3.73 3.67 3.70 3.88 3.76 

S.R. − 0.98 2.56 2.94 3.02 2.87 2.38 2.77 3.74 3.93 3.79 3.70 4.12 

Skew − 0.13 -0.57 -0.27 -0.62 -0.03 -0.76 -0.36 0.36 -0.26 -0.03 0.56 0.12 

Kurt − 0.06 0.91 0.75 2.29 -0.15 1.79 1.22 0.70 0.01 0.71 2.29 0.22 

Max DD − 34.70 14.71 10.72 16.70 8.26 9.81 13.22 7.43 6.54 10.20 10.10 9.76 

Max 1M Loss − 11.02 12.59 9.77 14.44 6.86 9.11 12.01 5.02 5.28 7.15 7.61 6.33 

Long-Only 

Avg 1.13 2.00 2.42 2.62 2.86 2.67 2.17 2.87 3.04 3.16 3.11 3.18 3.35 

Std 7.80 8.99 7.08 7.77 7.92 7.58 8.17 7.96 8.27 7.61 7.97 8.23 8.26 

S.R. 0.50 0.77 1.19 1.17 1.25 1.22 0.92 1.25 1.27 1.44 1.35 1.34 1.41 

Skew -0.03 0.13 0.02 0.12 0.10 -0.36 -0.04 0.10 0.08 0.07 -0.04 0.23 0.18 

Kurt 1.24 1.02 1.37 1.49 1.50 2.38 1.59 1.51 1.73 1.16 1.89 1.48 1.17 

Max DD 54.23 52.24 30.46 26.64 24.78 34.91 41.63 25.18 28.96 23.57 25.95 25.60 24.52 

Max 1M Loss 25.04 26.07 21.50 23.82 24.69 26.78 26.43 24.05 25.72 21.55 25.95 23.92 22.69 

 

 

 

 

 

 

 

 

 

 

4.4. Transaction costs 

To assess the economic significance of the portfolios’

performance, we ultimately have to include transaction

costs in our analysis. For the Chinese market, the cost of

an A-share transaction mainly consists of three compo-

nents: commission, stamp tax, and slippage. Compared to

commissions and the stamp tax, slippage requires a more

careful investigation as it is often difficult to execute all

transactions at the pre-specified price without affecting

market price due to the liquidity issue. In the Chinese

stock market, the commission fee for institutional in-
16 
vestors was around 5 bps in 2012, then quickly decreased. 

In recent years, the commission fee is usually 2-3 bps for 

retail investors and even lower for institutional investors. 

The stamp tax has been set to 10 bps since 2008 and is 

collected unilaterally from sellers. 

We consider two trading schemes to quantify the size 

of slippage. The first one relies on the time-weighted 

average price (TWAP) for the first 30 minutes in the first 

trading day of a given month, as we assume orders are 

split equally and implemented at the beginning of every 

minute. The slippage is thus the relative difference be- 

tween the TWAP and the open price. Similarly, the second 
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Table 9 

Slippage of machine learning portfolios. This table reports relevant summary statistics (average, standard error, skewness, kurtosis, first quantile, third 

quantile) of slippage for machine learning portfolios in the testing sample, including the time-weighted average price (in bps), the volume-weighted 

average price (in bps), and the conservative trading volume (in billion). The definitions of TWAP, VWAP, and market capacity are detailed in the first 

paragraph in Section 4.4 . 

OLS-3 PLS LASSO Enet GBRT RF VASA NN1 NN2 NN3 NN4 NN5 

+ H + H + H + H 

TWAP (buy) 

Avg 2.65 2.84 1.71 2.16 2.52 4.45 1.44 2.56 3.48 3.34 3.01 3.49 

Std 59.32 47.62 48.64 50.13 49.49 50.73 51.73 50.24 49.04 49.47 51.15 50.60 

Skew −3 . 26 −3 . 57 −3 . 34 −3 . 35 −3 . 94 −3 . 33 −3 . 47 −3 . 62 −3 . 59 −3 . 34 −3 . 27 −3 . 13 

Kurt 22.13 24.46 23.06 23.08 27.50 21.33 23.63 24.86 25.00 22.65 21.56 20.25 

q 0 . 25 −12 . 95 −8 . 10 −11 . 63 −10 . 74 −9 . 87 −7 . 36 −9 . 28 −7 . 10 −6 . 97 −7 . 66 −7 . 03 −9 . 86 

q 0 . 75 28.60 22.73 23.00 23.33 26.61 28.89 24.36 23.31 23.89 23.22 25.70 25.32 

TWAP (sell) 

Avg −5 . 62 −7 . 32 −7 . 14 −7 . 72 −8 . 40 −8 . 67 −7 . 60 −6 . 96 −8 . 30 −7 . 53 −8 . 02 −8 . 05 

Std 35.90 30.81 29.80 31.86 31.40 34.09 32.01 32.29 31.59 30.56 32.54 32.53 

Skew 1.89 1.52 1.39 1.73 1.88 1.50 1.63 1.44 1.60 1.17 1.04 1.33 

Kurt 16.55 15.20 14.84 16.57 17.39 16.22 15.56 15.97 16.34 13.82 13.13 13.51 

q 0 . 25 −21 . 98 −18 . 24 −19 . 02 −20 . 80 −19 . 81 −22 . 39 −21 . 02 −19 . 48 −21 . 34 −19 . 79 −20 . 76 −21 . 13 

q 0 . 75 7.64 3.13 4.95 3.38 3.24 1.26 4.47 3.73 1.74 4.69 4.18 2.54 

VWAP (buy) 

Avg 3.08 3.07 1.38 1.85 3.15 5.06 0.97 2.40 3.60 3.13 2.75 3.15 

Std 61.48 50.01 51.50 52.81 50.93 52.98 54.60 53.49 51.99 52.06 53.59 53.55 

Skew −3 . 74 −3 . 98 −3 . 78 −3 . 80 −4 . 12 −3 . 74 −3 . 88 −4 . 08 −4 . 01 −3 . 78 −3 . 67 −3 . 52 

Kurt 26.42 28.98 27.29 27.51 29.78 25.53 27.90 29.65 29.43 26.95 25.77 24.07 

q 0 . 25 −11 . 71 −7 . 92 −12 . 29 −11 . 18 −9 . 40 −6 . 86 −10 . 38 −8 . 83 −6 . 58 −7 . 55 −8 . 53 −9 . 30 

q 0 . 75 29.53 23.00 24.01 25.46 28.42 30.69 23.82 24.94 27.02 23.98 25.92 26.52 

VWAP (sell) 

Avg −5 . 11 −7 . 04 −6 . 69 −7 . 21 −8 . 08 −8 . 51 −7 . 04 −6 . 53 −7 . 60 −6 . 89 −7 . 49 −7 . 69 

Std 37.16 31.31 30.90 32.90 31.90 35.05 32.72 33.34 32.81 31.38 33.40 33.29 

Skew 3.10 2.63 2.66 3.04 3.08 2.89 2.84 2.79 3.00 2.42 2.25 2.49 

Kurt 23.42 20.96 21.37 24.19 24.67 23.95 22.51 22.61 24.26 19.74 18.60 19.75 

q 0 . 25 −22 . 70 −19 . 36 −18 . 35 −20 . 50 −20 . 28 −23 . 03 −20 . 82 −19 . 53 −20 . 38 −19 . 77 −21 . 43 −20 . 40 

q 0 . 75 8.07 3.35 4.53 4.04 3.01 2.17 3.71 3.24 2.35 3.52 3.83 2.71 

Market Capacity 

Avg 2.04 3.44 2.65 3.14 5.56 4.65 2.71 3.49 3.41 3.20 3.44 3.58 

Std 1.96 3.65 3.35 4.01 4.57 4.80 3.37 4.20 3.63 3.49 3.86 3.64 

Skew 4.79 4.24 6.58 6.16 2.29 4.31 6.26 4.09 5.03 5.85 5.57 5.16 

Kurt 36.76 26.72 56.69 50.92 20.90 27.82 53.31 23.61 39.08 48.83 45.18 41.30 

q 0 . 25 1.03 1.62 1.12 1.36 2.61 2.14 1.98 1.53 1.41 1.19 1.56 1.54 

q 0 . 75 2.53 3.77 3.13 3.62 6.65 5.28 3.42 4.03 4.45 3.98 4.54 4.84 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

one estimates the volume-weighted average price (VWAP),

where we impute trading volumes for each minute interval

by taking the 20-day moving average and execute orders

proportionally to the predicted trading volumes. In addi-

tion, we provide rough estimates of market capacities by

calculating 5% of the trading volumes of the stocks traded.

Table 9 reports some relevant summary statistics for

TWAP, VWAP, and market capacities. On average, the total

deviation of the TWAP and VWAP from the open price

is around 10 bps after accounting for both buying and

selling. In some rare cases, such as the 2015 Chinese stock

market turbulence, the scale of slippage can be quite large

as the stock market goes up or down rapidly right after the

stock market opening. However, in such cases, the signs

of buying and selling slippage are likely the same, which

could partly reduce the actual slippage that investors face.

A back-of-the-envelope calculation indicates that 25 bps

might be a reasonable estimate of transaction cost in

the Chinese stock market during normal times. However,

given that slippage can be higher than 10 bps under some

extreme circumstances, we take a conservative approach
17 
by considering trading costs of 20, 40, 60, and 80 bps 

to account for the effect of transaction costs on portfolio 

performance. 

In Table 10 , we report the monthly returns and the 

Sharpe ratios when we include different levels of trans- 

action costs. It turns out that, due to the low frequency 

of our strategies, the portfolios still provide a considerable 

and economically significant performance. For our bench- 

mark strategy, the NN4, the Sharpe ratio in the long-short 

setting decreases from 2.91 to 2.34 in the extreme case 

when we assume a round trip cost of 80 bps. Using a 

more realistic assumption of 20 bps, the Sharpe ratio 

decreases only to 2.76. A similar observation can be made 

for the long-only strategy, which is more relevant from 

a practitioner’s viewpoint. For the long-only strategy, the 

Sharpe ratio’s decrease is from 1.68 to 1.46 under the 

assumption of 80 bps. Therefore, our transaction cost 

analysis shows that the different strategies’ performance 

remains economically significant even under conserva- 

tive assumptions about the magnitude of transaction 

costs. 
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Table 10 

Portfolio performance including transaction costs (value-weighted). This table reports the impact of transaction costs on the monthly return (in %) and the 

annualized Sharpe ratio of the portfolio strategies based on different machine learning algorithms. 

Monthly return Sharpe ratio 

Long-Short 

Transaction costs 0 bps 20 bps 40 bps 60 bps 80 bps 0 bps 20 bps 40 bps 60 bps 80 bps 

OLS( + H) 3.24 2.94 2.65 2.36 2.06 2.05 1.87 1.68 1.49 1.31 

OLS-3( + H) 1.80 1.66 1.53 1.39 1.25 0.94 0.87 0.80 0.73 0.66 

PLS 3.17 3.00 2.82 2.65 2.47 2.06 1.95 1.84 1.73 1.62 

LASSO( + H) 3.72 3.48 3.23 2.98 2.74 2.30 2.15 1.99 1.84 1.68 

Enet( + H) 3.79 3.53 3.26 2.99 2.72 2.27 2.11 1.95 1.78 1.62 

GBRT( + H) 3.15 2.90 2.65 2.41 2.16 1.67 1.54 1.41 1.28 1.15 

RF 2.22 2.01 1.80 1.59 1.38 1.47 1.33 1.20 1.06 0.92 

VASA 4.49 4.27 4.06 3.84 3.62 2.47 2.35 2.23 2.11 1.99 

NN1 5.17 4.91 4.65 4.39 4.12 2.48 2.36 2.23 2.10 1.97 

NN2 4.75 4.50 4.24 3.98 3.73 3.26 3.08 2.91 2.73 2.55 

NN3 5.50 5.24 4.98 4.72 4.47 3.45 3.28 3.12 2.96 2.79 

NN4 5.40 5.14 4.87 4.61 4.35 2.91 2.76 2.62 2.48 2.34 

NN5 5.53 5.25 4.97 4.69 4.41 3.01 2.85 2.70 2.55 2.39 

Long-Only 

Transaction costs 0 bps 20 bps 40 bps 60 bps 80 bps 0 bps 20 bps 40 bps 60 bps 80 bps 

OLS( + H) 3.03 2.87 2.72 2.56 2.41 1.34 1.28 1.21 1.14 1.07 

OLS-3( + H) 2.45 2.35 2.26 2.17 2.07 0.90 0.86 0.83 0.80 0.76 

PLS 2.74 2.64 2.55 2.46 2.37 1.42 1.37 1.33 1.28 1.23 

LASSO( + H) 3.37 3.23 3.10 2.97 2.83 1.50 1.44 1.38 1.32 1.26 

Enet( + H) 3.35 3.21 3.07 2.92 2.78 1.50 1.44 1.37 1.31 1.24 

GBRT( + H) 2.59 2.47 2.35 2.22 2.10 1.31 1.25 1.19 1.13 1.07 

RF 2.22 2.10 1.99 1.88 1.77 1.07 1.02 0.97 0.91 0.86 

VASA 4.04 3.92 3.80 3.68 3.56 1.64 1.59 1.54 1.49 1.44 

NN1 4.23 4.08 3.94 3.80 3.66 1.52 1.47 1.42 1.37 1.32 

NN2 3.84 3.70 3.56 3.43 3.29 1.72 1.66 1.60 1.54 1.48 

NN3 4.36 4.22 4.08 3.94 3.80 1.76 1.70 1.64 1.59 1.53 

NN4 4.50 4.36 4.21 4.07 3.92 1.68 1.63 1.57 1.52 1.46 

NN5 4.55 4.40 4.25 4.10 3.94 1.63 1.57 1.52 1.46 1.41 

Table 11 

Impacts of machine learning portfolios. This table reports the out-of-sample performance measures for all machine learning models of the equally-weighted 

long-only and long-only portfolios with tradable stocks, i.e., excluding stocks at price limits. All measures are based on 103 monthly out-of-sample returns 

from January 2012 to June 2020. “Avg”: average predicted monthly return ( % ). “S.R.”: annualized Sharpe ratio. “Nontradable”: fraction of stocks that are not 

tradable ( % ). 

Machine Learning Portfolios 

OLS-3 PLS LASSO Enet GBRT RF VASA NN1 NN2 NN3 NN4 NN5 

+ H + H + H + H 

Long-only 

Avg 2.24 3.67 4.05 4.20 3.83 3.48 4.38 4.50 4.45 4.74 4.91 4.85 

S.R. 0.85 1.64 1.54 1.58 1.58 1.42 1.66 1.63 1.77 1.77 1.78 1.73 

Tradable 

Avg 2.23 3.45 3.76 3.91 3.52 3.21 4.08 4.19 4.19 4.42 4.59 4.53 

S.R. 0.84 1.55 1.47 1.50 1.48 1.31 1.57 1.55 1.68 1.68 1.70 1.65 

Nontradable 0.1 0.5 0.6 0.6 0.7 0.7 0.6 0.7 0.7 0.5 0.7 0.8 

 

 

 

 

 

 

 

 

 

 

4.5. Daily price limits 

Daily price limit rules are widely used in stock ex-

changes around the world, especially in emerging markets,

in the hope that they will serve as a market stabilization

mechanism ( Deb et al., 2010 ). China’s market imposes

daily price limits of 10% on regular stocks listed in Main

Board and Second Board (20% on stocks listed in Second

Board since August 2020), 5% on special treatment (ST)

stocks, and 20% on stocks listed in Sci-Tech Innovation

Board. For the Chinese market, Chen et al. (2019b) find

that price limits incentivize large investors to pursue a
18 
destructive strategy of pushing up stock prices to the 

upper price limit and then selling on the next day. Hence, 

they argue that this unintended effect renders daily price 

limits counterproductive. 

Given that our predicting horizon is the one-month 

forward return rather than daily returns, we conjecture 

that our main results will only be mildly affected by price 

limit rules. To explore the effect on portfolio performance, 

we proceed as follows. On each rebalancing date, we 

exclude stocks that are closed at the upper price limits 

for buying targets and postpone the selling targets to the 

date when the prices are not at the lower price limits. 
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Table 11 reports the results for the long-only portfolio.

Indeed, we find that both the returns and the Sharpe

ratios remain high. For instance, for NN4, the Sharpe ratio

declines from 1.78 to 1.70. Hence, overall, our results

remain robust to the inclusion of the price limit rule. 

5. Conclusion 

We investigate several machine learning method’s

predictive power in the Chinese stock market. We find

that the most critical factors are liquidity-based trading

signals. What surprises us is that signals based on price

momentum only play a minor role. It takes many years

for a stock market to develop the qualities that allow

and encourage fundamental investing. The Chinese stock

market is moving in that direction, but our results indicate

that fundamental factors are the second most crucial

factor category. We also find that the short-termism of

retail investors generates substantial predictability at

short investment horizons, particularly for small stocks.

Simultaneously, since governmental signaling plays such

an essential role in the Chinese market, we observe a sub-

stantial increase in SOEs’ predictability at longer horizons. 

Our portfolio analysis shows that the high predictabil-

ity at short horizons translates into high Sharpe ratios

for long-short portfolios. In particular, neural networks

and VASA also provide a robust performance during the

Chinese stock market crash in 2015. However, shorting

stocks in the Chinese market is not practical. Therefore,

we also analyze the long-only portfolio and find that the

performance remains economically significant. We also

present a new way of performing an ex-ante model selec-

tion, which generates significant performance. Overall, we

show that machine learning methods can be (even more)

successfully applied to markets that have entirely different

characteristics than the US market. 

Supplementary materials 

Supplementary material associated with this article can

be found, in the online version, at doi: 10.1016/j.jfineco.

2021.08.017 . 
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