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A Methodology

A.1 Simple linear regression

We take linear regression equipped with the Huber loss function as the reference model, because

it is arguably the simplest tool that has been widely used for prediction. Since the linear regression

model does not have any hyperparameters, we thus merge the validation sample into the training

sample. The model imposes a linear structure on the conditional expectation of stock i’s excess

return g(zit), i.e.,

ri,t+1 = g(zi,t; θ) + εi,t = z′i,tθ + εi,t, (A.1)

where g(·) is a function that describes the relation between excess stock return and the p×1 vector of

predictors, zi,t, and θ is the vector of coefficients which includes the intercept term. This model can

be estimated handily, with a feasible closed-form solution when l2 loss is adopted for the objective

function. However, linear regression model estimated using the l2 loss is vulnerable to outliers in the

data, which can leads to very bad prediction performance.1 Given the fact that financial returns and

stock-level characteristics are often heavy-tailed, we instead minimize the Huber robust objective
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1We also consider the linear regression model equipped with the common l2 loss function in our baseline analysis,

which achieves very bad prediction performance as the corresponding R2
oos is negative and its scale is more than an

order of magnitude larger than other models. Therefore, we only report the results for the linear regression model
equipped with the Huber loss (OLS+H). The results for OLS with l2 loss are available upon request.

1

mailto:markus.leippold@bf.uzh.ch
mailto:qian.wang@bf.uzh.ch
wenyuzhou@intl.zju.edu.cn


function following Gu et al. (2020), which is given by:

LH(θ) =
1

NT

N∑
i=1

T∑
t=1

H(ri,t+1 − g(zi,t; θ);M), (A.2)

where

H(x;M) =

x
2, if |x|≤M,

2M |x|−M2, if |x|> M.

The Huber loss function can be understood as a “trimmed” l2 loss function, in which the threshold

is determined by the tuning parameter M . In addition, the Huber loss function can be embedded

into other machine learning methods as well, such as regularized linear models, and tree models.

In the main context, we estimate OLS-3, LASSO, Enet, PLS, and GBRT using the Huber robust

objective function following the practice in Gu et al. (2020).

A.2 Regularized linear regression

One big problem with simple linear regression is that the estimation results often becomes un-

reliable when there are a large number of covariates. On the one hand, in the high-dimensional

setting, linear regression model estimated without regularization will be inconsistent.2 On the other

hand, some covariates can be highly correlated, or even redundant, resulting in the multicollinearity

problem and efficiency loss.

Fortunately, there are many machine learning studies employing regularized linear models that

can address these concerns. Popular methods include LASSO, the elastic net, Ridge regression,

etc. In our empirical analysis, we include LASSO and the elastic net (Enet) as prediction models.

The statistical properties of LASSO have been heavily studied for both i.i.d. and time series data.3

The elastic net is a convex combination of LASSO and Ridge regression, and thus includes both as

specially cases. These two methods share the same model specification with a simple linear regression

in Eq. A.1, while the main difference is that they shrink the coefficients of irrelevant covariates

2Theoretically, the high-dimensional setting refers to the scenario in which the number of covariates P grows with
the number of observations NT , or P > NT . However, as pointed out in Gu et al. (2020), it is reasonable to compare
P with T , instead of with NT , due to the strong cross-sectional correlation between stock returns. Therefore, the
prediction problem in this paper can also be understood as a quasi high-dimensional problem.

3See Bühlmann and Van De Geer (2011) for LASSO with i.i.d. data, and Medeiros and Mendes (2016) for time
series data.
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towards zero by imposing an extra penalty term to the original loss function. The objective function

for LASSO is given by:

LLASSO
H (θ) = LH(θ) + λ

P∑
j=1

|θj |, (A.3)

where λ is a hyperparameter that controls the size of the penalty. Furthermore, the objective function

for Enet takes the following form:

LEnet
H (θ) = LH(θ) + (1− ρ)λ

P∑
j=1

|θj |+
1

2
ρλ

P∑
j=1

θ2j , (A.4)

where λ plays the same role as in Eq. A.3, and ρ determines the relative weight between l1 and l2

penalties. Following the convention, we do not penalize the intercept term θ0 in both models. It is

clear that the objective function Eq. A.4 degenerates to the one for LASSO when ρ = 0, and to the

Ridge regression when ρ = 1. The tuning of λ and ρ are specified in Section A.7. For more details

on the elastic net, see the original paper by Zou and Hastie (2005).

A.3 Partial least squares

Partial least squares (PLS) is a classic dimensional reduction technique that can effectively extract

signals among a large number of covariates. This method often outperforms regularized linear models

when covariates are highly correlated, which is a common attribute of stock-level characteristics.

Unlike LASSO and Enet, which directly penalize all covariates, PLS exploits the covariation between

the predicted target and predictors by utilizing a model-averaging approach. We next briefly discuss

the main context of the PLS regression. The PLS regression can be represented in its matrix form

as follows:

R = (ZWK)θK + Ẽ, (A.5)

where R is the NT × 1 vector of stock returns ri,t+1, Z is the corresponding NT × P vector of

stock-level characteristics, WK is a P ×K transformation matrix, θK is the K × 1 vecor of model

parameters, and Ẽ is the NT × 1 vector of residuals.4 For PLS regression, K is the only tuning

parameter, which is determined via the validation procedure. The transformation matrix WK plays

4For the sake of notational simplicity, we assume the panel data are balanced when introducing our prediction
models.

3



the crucial role, as it projects the original covariate matrix Z onto a K-dimensional linear space.

With a proper transformation matrix, this method can reserve the useful information and rule out

the noise as we have K < P in general.

The main idea of PLS regression is to search for the transformation matrix that maximizes the

correlation between the forecast target and the transformed covariates. In this sense, the columns of

WK , denoted by w1, ..., wK , solve a sequence of optimization problems, i.e.,

wj = arg max
w

Cov2(R,Zw), s.t. w
′
w = 1, Cov(Zw,Zwl) = 0, l = 1, 2, ..., j − 1, (A.6)

for all j = 1, ...,K. In our analysis, we adopt the build-in algorithm in the sklearn package of Python

for the calculation of WK . Lastly, given a solution for WK , θK can be easily estimated by regressing

R on ZWK .

A.4 Tree models

Tree models, including random forests (RF), gradient boosted regression trees (GBRT), and other

variants, are very important machine learning techniques. They are fully nonparametric, and flexible

enough to handle both classification and regression problems. These two methods, however, both

build on a number of basic trees. Therefore, they can also be understood as different ensemble

methods depending on the specific procedures taken.

A basic tree is a set of decision rules that cluster observations into one of the multiple subgroups

(partitions), usually named as “leaves.” More precisely, the structure of a tree is determined by

multiple decision nodes and the corresponding splitting variables. At each node, a splitting variable

generates two disjoint branches based on a splitpoint. The basic tree “grows” by sequentially devel-

oping branches until reaching the “leaves” (terminal nodes). Mathematically, a basic tree with K

leaves, and depth L, can be represented as:

g(zi,t; θ,K,L) =
K∑
k=1

θk1{zi,t∈Ck(L)}, (A.7)

where Ck(L) is the k-th partition of the data, and the depth L is the largest number of nodes in a

complete branch (from the top node to any terminal node). Suppose stock i with characteristics zi,t
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is clustered into the k-th leaf, then the basic tree will return θk as the predicted stock return. It

is noteworthy that θk here is defined as the sample average of outcomes within the k-th leaf based

on the training data. There are ample studies on selecting splitting variables and splitpoints for the

basic tree model, and we refer readers to James et al. (2013) for an excellent description. Even though

basic trees are fairly flexible, they are vulnerable to the overfitting problem, which often severely

impairs their performance in practice. To address this problem, multiple regularization methods have

been proposed, among which the most popular ones are GBRT and RF. We next briefly describe

these two methods.

A.4.1 Gradient boosted regression trees

The main idea of the GBRT model is to produce a “strong learner” by recursively combining

the prediction results from many “weak learners.”5 The GBRT model proceeds as follows. We start

with a GBRT model with only two simple trees. First, we build a simple tree of depth L to fit stock

returns based on stock-level characteristics. Next, a second simple tree of the same depth L is built

to fit the residuals from the first tree. The forecast from the first tree plus the forecast from the

second tree multiplied by the learning rate v ∈ (0, 1) is the ensemble prediction of this basic GBRT

model. To build a GBRT model with B trees, we simply build another B − 2 trees in the similar

manner. At each step for the b-th tree, we grow a new tree to fit the residuals from the GBRT model

with b−1 trees, and add the product of its forecast and the learning rate to the previous final output

to form the final output of the GBRT model with b trees. Repeat this step until B trees are grown.

It is noteworthy that there are three hyperparameters for the GBRT model, including the depth

of trees L, the number of trees B, and the learning rate v. These parameters are determined based

on the validation procedure in Section A.7.

A.4.2 Random forests

Random forest is another important ensemble method that also utilizes forecasts from many

underlying simple trees. Unlike GBRT, a random forest model relies on a more general technique

5Simple tree models are usually thought as “weak learners,” because they are prone to overfit the data and thus
perform badly.
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known as “bagging” (Breiman, 2001) or bootstrap aggregation. The main idea of the method is

to build B separate trees, and average over their forecasts to reduce prediction variation. More

precisely, each of those B trees is trained on a bootstrapped sample of the original data, and uses

only a randomly drawn subset of covariates for developing branches. Since each tree generated in

this way is identically distributed, the expectation of the final output is the same as the expectation

of a single tree. However, taking the average can significant benefit from reducing the variance while

keeping the bias at a minimal level. Lastly, we note that there are also three tuning parameters

for random forests, which include the depth of trees L, the number of trees B, and the number of

covariates for building simple trees. See Section A.7 for more details.

A.5 Variable subsample aggregation (VASA)

De Nard et al. (2020) introduce a new subsampling procedure, which they call VASA. VASA

reduces the dimension by a subset selection of the predictors, similar as for LASSO or subset selection

methods. However, it does not suffer as much from high variability and model-selection bias, as it

averages over multiple subsampled (factor) model predictions. The conditional expected return is

still assumed to be a linear function and is obtained by averaging over B OLS predictions, each

trained on a (pseudo) random subset of the P predictors, i.e.,

gVASA
i (zi,t)

def
=

B∑
b=1

ωbgi,b(z̃i,t,b)
def
=

B∑
b=1

ωb(αi,b + z̃′i,t,bβ̃i,b) , (A.8)

where ωb ∈ [0, 1] is the weight of the b-th OLS prediction with
∑B

b=1 ωb = 1. Additionally, z̃i,t,b and

β̃i,b are κb-dimensional vectors where κb represents the dimension (subsample size) of submodel b.

We assume that the optimal subsampling size only depends on i and t but is constant across the

submodels κ ≡ κb. The number of submodels B and their dimension κ are tuning parameters. Then,

for each submodel b = 1, . . . , B, the estimation problem is given by:

argmin
ai,b,b̃i,b

T∑
t=1

(ri,t+1 − ai,b − z̃′i,t,bb̃i,b)2. (A.9)

To compute the subsampling probabilities, we follow De Nard et al. (2020) and use the in-sample

R2
i,p as a variable importance measure. For more details, we refer to the original paper.
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A.6 Neural networks

The final prediction method we introduce is the neural network, which is arguably the most pop-

ular machine learning technique in recent years. They have been widely applied for complex machine

learning problems, such as computer vision, automated driving, and natural language processing. It

is well-known that neural networks can approximate any smooth functions sufficiently well, which is

ensured by the universal approximation theorem (Hornik et al., 1989). However, there is still much

to learn about these models given the fact that they are among the least transparent and least in-

terpretable machine learning methods. In fact, the name “neural networks” derives from the history

that they were first developed as models for the human brain, which also remains highly mysterious

given its complex structure.

For our analysis, we focus on the feed-forward, multi-layer neural networks. Similar to a human’s

decision process, such models consist of an “input layer” for stock-level characteristics, one or more

“hidden layers” that process the interactions between those predictors, and an “output layer” that

generates a linear output. We consider neural networks with up to five hidden layers. Each layer

consists of a certain number of neurons, which are built with the commonly-used rectified linear unit

(ReLU), i.e., σ(x) = max(0, x).6 As an illustration, the predicted stock return of the NN3 model can

be written as

ri,t+1 = α1 +W1σ(α2 +W2σ(α3 +W3σ(α4 +W4zi,t))) + εi,t+1, (A.10)

where the activation function, σ(·), is applied elementwise, and {α1, ..., α4,W1, ...W4} is the set

of biases and weight matrices to be estimated. The network architectures and the corresponding

numbers of parameters of NN1 - NN5 are summarized in Table A.1.

6ReLU is often preferred to other alternative activation functions, such as sigmoid, hyperbolic, and softmax, because
it overcomes the vanishing gradient problem and its derivative is easy to calculate.
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Table A.1

Number of neurons and parameters for all neural network models.

Model Hidden Layers Number of Parameters
NN1 32 32(P+1) + 33
NN2 32, 16 32(P+1) + 545
NN3 32, 16, 8 32(P+1) + 673
NN4 32, 16, 8, 4 32(P+1) + 705
NN5 32, 16, 8, 4, 2 32(P+1) + 713

In our analysis, all neural networks are trained using TensorFlow, a powerful machine learning

system. As in De Nard et al. (2020), we adopt the Adam optimization algorithm (Kingma and

Ba, 2014), early stopping, batch normalization (Ioffe and Szegedy, 2015), ensembles, and dropout

(Srivastava et al., 2014) when training our models.
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A.7 Hyperparamters

In Table A.2, we summarize the hyperparameters for all prediction models and the corresponding

specifications.

Table A.2

Hyperparameters for all models. The table summarizes the ranges of hyperparameters for all machine learning models.

OLS-3+H PLS LASSO+H Enet+H GBRT+H

Huber loss
M = 1.35

√ √ √ √

Specification
bm,
mve,
mom1m

K λ ∈ (10−4, 10−1)
ρ = 0.5
λ ∈ (10−4, 10−1)

#Depth
L = 1 ∼ 3
#Trees
B = 1 ∼ 1000
Learning Rate
LR ∈ {0.01, 0.1}

RF VASA NN1-NN5

Specification

#Depth
L = 1 ∼ 7
#Trees
B = 100 ∼ 300
#Features
f = 3 ∼ 50

#Subsamples
B = 1 ∼ 300
#Components
K = 1 ∼ 50

L1 penalty
λ ∈ (10−5, 10−2)
Learning Rate
LR ∈ (10−4, 10−2)
Batch Size
B ∈ {64, 512, 2048, 10000}
Epochs = 100
Patience = 5
Adam Para.= Default
Ensemble = 10
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B Details on statistical inference methods

We briefly introduce the statistical inference methods used in the main text for comparing the

performance of different prediction models. Here we mainly focus on implementing two statistical

tests: the unconditional superior predictability test (Hansen, 2005) and the conditional superior

predictability test (Li, Liao and Quaedvlieg, 2020). Reader interested in the technical details should

refer to the original papers. To facilitate the discussion, we first introduce some notations following

the convention in the forecast evaluation literature. Let {F †t }t≥1 denote the variable of interest to

be predicted, which in our case is the monthly stock price. We want to compare the performance of

J competing models relative to a benchmark model in terms of the forecast {F †t }t≥1. Let {F0,t}nt=1

and {Fj,t}nt=1 for 1 ≤ j ≤ J denote the predicted values of the variable of interest in n periods. For

a given loss function L(·, ·), we let Yj,t denote the performance of the j-th competing model relative

to the benchmark model in period t, i.e.,

Yj,t = L(F †t , Fj,t)− L(F †t , F0,t). (A.11)

It is noteworthy that the benchmark model has a better prediction performance in period t if Yj,t ≥ 0.

B.1 Unconditional superior predictive ability test

The unconditional superior predictive ability (USPA) test, which is first studied in White (2000)

and later refined by Hansen (2005), has been widely used in finance research. We adopt the refined

version in Hansen (2005) instead of the original reality check (RC) for data snooping in White

(2000), because the former usually has larger statistical power. The USPA test directly compares

the unconditional (average) performance of different competing prediction models relative to the

benchmark model, with the null hypothesis given by:

HUSPA
0 : E[Yj,t] ≥ 0, for all 1 ≤ j ≤ J.

It is noteworthy that both the USPA test and CSPA test build on the probabilistic properties of

Yj,t directly instead of the underlying loss function and prediction models. Let Yt = (Y1,t, ..., YJ,t)
′,

µ = E[Yt], Ȳ = n−1
∑n

t=1 Yt, and Ȳj = n−1
∑n

t=1 Yj,t for j = 1, ..., J . Under some regularity
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conditions, one can show that:

n1/2(Ȳ − µ)
d−→ N (0,Ω), (A.12)

where Ω is the asymptotic covariance matrix of n1/2(Ȳ − µ). Based on this result, Hansen (2005)

proposed use of the following test statistic:

TUSPAn = min
[

min
j=1,...,J

n1/2Ȳj
ω̂j

, 0
]
,

in which the estimator of the asymptotic variance of ω̂2
j is given by:

ω̂2
j = γ̂0,j + 2

n−1∑
i=1

K(n, i)γ̂i,j ,

where γ̂i,j = n−1
∑n−i

l=1 (Yj,l − Ȳj)((Yj,l+i − Ȳj)), i = 0, 1, ..., n − 1, and K(n, i) is the kernel

weight for a stationary bootstrap (Hansen (2005)). To invoke a null distribution that is based on

Eq. A.12, one also needs to select a consistent estimator of µ, for which Hansen (2005) recommends

using µ̂j = Ȳj1{n1/2Ȳj ≥
√

2 log log n}. Intuitively, the null hypothesis will be rejected if TUSPAn

is smaller than the critical value at the given significance level. However, the critical value can

not be calculated analytically in general and the bootstrap method is recommended. For reader’s

convenience, the implementation steps of the test is presented as follows.

Algorithm for the USPA test (Hansen, 2005)

Step 1. Generate B resembles {Y(b)
t : t = 1, ..., n}Bb=1 from {Yt : t = 1, ..., n} using the stationary

bootstrap method in Hansen (2005).7

Step 2. For each resample, calculate TUSPA(b),n = min[minj=1,...,J(n1/2Ȳj/ω̂j), 0].

Step 3. Calculate the bootstrap p-value: p̂ = 1
B

∑B
b=1 1{TUSPA(b),n < TUSPAn }. Reject the USPA

null hypothesis at significance level α if p̂ < α.

B.2 Conditional superior predictive ability test

One potential limitation of the USPA test is that two prediction models may have an identical

performance on average but can behave very differently under different macroeconomic (market-level)

7In this study, we set B = 10, 000.
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conditions. The USPA test cannot detect such differences because it only focuses on the average

(unconditional) relative performance of prediction models. Motivated by this observation, Li, Liao

and Quaedvlieg (2020) develop an innovative conditional superior predictive ability (CSPA) test

based on the developments in the series estimation literature (Chernozhukov et al. (2013); Li, Liao

and Quaedvlieg (2020)). The null hypothesis of the CSPA test is given by:

HCSPA
0 : E[Yj,t|Xt = x] ≥ 0, for all x ∈ X , 1 ≤ j ≤ J,

where Xt is the variable relates to the macroeconomic (market-level) conditions, such as the GDP

growth rate, the macroeconomic uncertainty and the volatility index (VIX), and X is the support of

Xt. It is worth noting that X should be compact, while the compactness condition can be trivially

satisfied by implementing any one-to-one transformations in Li, Liao and Gao (2020). The main idea

of the CSPA test is to directly estimate the conditional expectation functions E[Yj,t|Xt = x] using the

series estimation method and conduct uniform inference with the help of the strong approximation

theory for time series data. Following the notation in Li, Liao and Quaedvlieg (2020), we let hj,n =

E[Yj,t|Xt = x] for all 1 ≤ j ≤ J and P (x) = (p1(x), ..., pmn)> be an mn × 1 vector of basis functions,

such as Legendre polynomial, power series, spline, etc. Here mn is the number of basis terms used

to estimate hj,n, which is a divergent number that depends on the sample size n. The conditional

expectation functions can then be estimated by a OLS-type regression as follows:

ĥj,n(x) = P (x)>b̂j,n, (A.13)

where:

b̂j,n =
(
n−1

n∑
t=1

P (Xt)P (Xt)
>
)−1(

n−1
n∑
t=1

P (Xt)Yj,t

)
.

To conduct statistical inference on ĥj,n, one need to derive its asymptotic distribution, which lies in

the asymptotic properties of b̂j,n. However, as pointed out in Li, Liao and Quaedvlieg (2020), this

is not a standard problem since the dimension of b̂j,n divergences with the sample size n, making

the classical central limit theorem invalid. The solution to such inference is to utilize the strong

approximation theory for growing-dimensional statistics, which is first developed in Chernozhukov

et al. (2013) and later generalized to time series data in Li and Liao (2020). Let ut = (u1,t, ..., uJ,t)
>

denote the vector of nonparametric regression error term, where uj,t = Yj,t − hj(Xt). Li and Liao
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(2020) and Li, Liao and Quaedvlieg (2020) show that n−1/2
∑n

t=1 ut ⊗ P (Xt),
8 which is the random

part of Ĥn(x) = (ĥ1,n(x), ..., ĥJ,n(x))> conditional on Xt, and can be approximated sufficiently well

by some Jmn-dimensional Gaussian vector Ñ ∼ N (0, An), where the covariance matrix An is given

by:

An = Var
(
n−1/2

n∑
t=1

ut ⊗ P (Xt)
)
. (A.14)

For the estimation of An, Li, Liao and Quaedvlieg (2020) recommend using the pre-whitened HAC

estimator and we follow their suggestion when implementing the test. Given the estimated covariance

matrix Ân, the Jmn × Jmn covariance matrix of the estimators (n1/2(b̂1,n − b∗1,n)>, ..., n1/2(b̂J,n −

b∗J,n)>)>9 is given by:

Ω̂n =
(
IJ ⊗ Q̂n

)−1
Ân

(
IJ ⊗ Q̂n

)−1
, (A.15)

where IJ is the J × J identity matrix and Q̂n = (n−1
n∑
t=1

P (Xt)P (Xt)
>)−1. It follows that the

standard deviation function of n1/2(ĥj,n(x)− hj(x)) can be estimated by:

σ̂j,n(x) =
(
P (x)>Ω̂(j, j)P (x)

)1/2
, (A.16)

where Ω̂(j, j) is the diagonal submatrix of Ω̂n, which corresponds to n1/2(b̂j,n − b∗j,n)>. Then we can

conduct statistical inference based on ĥj,n(x) for all 1 ≤ j ≤ J and x ∈ X . For reader’s convenience,

we borrow the following implementation algorithm directly from Li, Liao and Quaedvlieg (2020).

Algorithm for the CSPA test (Li, Liao and Quaedvlieg, 2020)

Step 1. Simulate a Jmn-dimensional Gaussian vectors ξ = (ξ>1 , ..., ξ
>
J )> ∼ N (0, Ω̂n), where ξ>j is

mn-dimensional and Ω̂ is defined in Eq. A.15. Repeat this step for B times and store {ξ(1), ..., ξ(B)}.

Step 2. For each ξ(b), 1 ≤ b ≤ B, calculate t̂
(b)
j,n(x) = P (x)>ξ

(b)
j for all 1 ≤ j ≤ J . Set

γ̃n = 1 − 0.1/ log(n). Let K̂n be the γ̃n-quantile of max1≤j≤J supx∈X t̂j,n(x) based on the sample

{t̂(b)j,n(x)}1≤b≤B,1≤j≤J .

8⊗ denotes the Kronecker product.
9Here b∗j,n is some constant vector, such that P (x)b∗j,n can uniformly approximate hj(x) sufficiently well on the

support of x. For more details, see Li, Liao and Quaedvlieg (2020).
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Step 3. Set

V̂n =
{

(j, x) : ĥj,n(x) ≤ min
1≤j≤J

inf
x∈X

(
ĥj,n(x) + n−1/2K̂nσ̂j,n(x)

)
+ 2n−1/2K̂nσ̂j,n(x)

}
,

where σ̂j,n(x) is defined in Eq. A.16.

Step 4. Set k̂n,1−α to be the (1− α)-quantile of sup(j,x)∈V̂n t̂j,n and calculate

η̂n,1−α = min
1≤j≤J

inf
x∈X

(
ĥj,n(x) + n−1/2k̂n,1−ασ̂j,n(x)

)
.

Reject the CSPA null hypothesis at significance level α if η̂n,1−α < 0.

When implementing the CSPA test in the main text, we set B = 10, 000 and apply the Akaike

Information Criterion (AIC) to select the basis functions following the procedure in Li, Liao and

Quaedvlieg (2020). One beneficial byproduct of the CSPA test is that it also allows us to learn ex-

actly what are the macroeconomic (market-level) conditions under which the benchmark model out-

performs (or does not outperform) the alternatives by plotting the conditional expectation functions

hj,n(x) for diagnosis. We also conduct these standard exercises when comparing the performance of

different prediction models.
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C Stock characteristics

C.1 Variable list

All stock characteristics are summarized in Table C.1.
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C.2 Variable construction

We closely follow the definitions in Green et al. (2017) and the original papers to construct the

stock-level characteristics.

(1) acc: We follow the definition of accruals in Sloan (1996) to construct acc, i.e.,

acc = [(∆CA−∆CASH)− (∆CL−∆STD−∆TP)−Dep]/Total Assets,

where ∆ represents the difference between two consecutive periods, CA, CASH, CL, STD, TP,

Dep, denote current assets, cash/cash equivalents, current liabilities, debt included in current

liabilities, income tax payable, depreciation and amortization expense, respectively. These data

are acquired from CSMAR.

(2) absacc: Absolute value of acc.

(3) agr : Annual percentage change in total assets. Data of total assets are acquired from CSMAR.

(4) beta: We estimate stock-level beta using weekly returns and value-weighted market returns for

three years ending month t − 1 with at least 52 weeks of returns. Stock returns are acquired

from the WIND database.

(5) betasq : Stock-level market beta squared.

(6) bm: Book-to-market ratio, which equals the book value of equity divided by market capital-

ization. Data are acquired from CSMAR.

(7) bm ia: This is the industry-adjusted book-to-market ratio introduced in Asness et al. (2000),

bm iait = bmit − bmIit,

where bmIit is the equally-weighted average book-to-market ratio of firms in firm i’s industry.

As firms’ industries are reported annually in CSMAR, we let firm i’s current industry to be

the one reported in the year prior to the current month.

(8) cash: Cash and cash equivalents divided by average total assets. Related data are reported in

quarterly reports and are acquired from CSMAR.

19



(9) cashdebt : Earnings divided by total liabilities, which is defined similar to that in Ou and

Penman (1989). Data are acquired from CSMAR.

(10) cashspr : Cash productivity, which is defined as quarter-end market capitalization plus long-

term debt minus total assets divided by cash and equivalents. Related data are contained in

quarterly reports and acquired from CSMAR.

(11) cfp: Operating cash flows divided by quarter-end market capitalization. Related data are

contained in quarterly reports and acquired from CSMAR.

(12) cfp ia: This is the industry-adjusted operating cash flows. The way of adjustment is similar to

that for bm ia. Data are acquired from CSMAR.

(13) chato: Change in sales divided by average total assets. Quarterly data on sales and total assets

are acquired from CSMAR.

(14) chato ia: Industry-adjusted change in sales divided by average total assets. Data are acquired

from CSMAR.

(15) chcsho: Monthly percentage change in shares outstanding. Monthly data on shares outstanding

are acquired from CSMAR.

(16) chempia: Industry-adjusted change in the number of employees. Related data are available

annually on CSMAR and the way of industry adjustment is similar as that for bm ia.

(17) chinv : Change in inventory scaled by total assets. Data are available quarterly on CSMAR.

(18) chmom: Cumulative returns from months t − 6 to t − 1 minus months t − 12 to t − 7. Stock

returns are acquired from WIND database.

(19) chpm: Change in income before extraordinary items scaled by sales. Related data are acquired

from CSMAR.

(20) chpm ia: Industry-adjusted change in income before extraordinary items scaled by sales. Data

are acquired from CSMAR.
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(21) chtx : Percentage change in taxes from quarter t− 1 to t. Data are acquired from CSMAR.

(22) cinvest : Change over one quarter in fixed assets divided by sales - average of this variable for

prior three quarters; if sales are zero, then scale by 0.01. Data are acquired from CSMAR.

(23) currat : The ratio of current assets to current liabilities. Data are acquired from CSMAR.

(24) depr : Depreciation divided by fixed assets. Data are acquired from CSMAR.

(25) divi : A dummy variable that equals to 1 if company pays dividends this year but did not in

prior year. Data are acquired from CSMAR.

(26) divo: A dummy variable that equals to 1 if company does not pay dividends this year but did

in prior year. Data are acquired from CSMAR.

(27) dolvol : Natural logarithm of trading volume times price per share from month t− 2. Data are

acquired from CSMAR.

(28) dy : Total dividends divided by market capitalization at year end. Data are acquired from

CSMAR.

(29) ear : Sum of daily returns in three days around earnings announcement. Data are acquired

from CSMAR.

(30) egr : Quarterly percentage change in book value of equity. Data are acquired from CSMAR.

(31) gma: Revenue minus cost of goods sold divided by lagged total assets. Quarterly data are

acquired from CSMAR.

(32) grCAPX : Percentage change in capital expenditures from year t−2 to year t. Data are acquired

from CSMAR.

(33) herf : Sum of squared percentage sales in industry for each company. Sales data and industry

code are acquired from CSMAR.

(34) hire: Percentage change in number of employees. Related data are acquired from CSMAR.
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(35) idiovol : Standard deviation of residuals of weekly returns on weekly equally-weighted market

returns for three years prior to month end. Data are acquired from the WIND database.

(36) ill : Average of daily (absolute return/RMB volume) in month t. Daily data are acquired from

WIND database.

(37) invest : The sum of annual change in fixed assets and annual change in inventories divided by

lagged total assets. Data are acquired from CSMAR.

(38) lev : Total liabilities divided by quarter-end market capitalization. Quarterly data are acquired

from CSMAR.

(39) lgr : Quarterly percentage change in total liabilities. Data are acquired from CSMAR.

(40) maxret : Maximum daily return from returns during month t − 1. Daily returns are acqired

from WIND database.

(41) mom12m: 11-month cumulative returns ending one month before month end. Stock returns

are acqired from WIND database.

(42) mom1m: 1-month cumulative return. Stock returns are acqired from WIND database.

(43) mom6m: 5-month cumulative returns ending one month before month end. Stock returns are

acqired from WIND database.

(44) mom36m: Cumulative returns from months t − 36 to t − 13. Stock returns are acqired from

WIND database.

(45) ms: Sum of eight indicator variables for fundamental performance following the corresponding

definitions in Mohanram (2005). Data are acquired from CSMAR.

(46) mve: Natural log of market capitalization at end of month t − 1. Related data are acquired

from CSMAR.

(47) mve ia: Industry adjusted natural log of market capitalization at end of month t− 1. Related

data are acquired from CSMAR.
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(48) nincr : Number of consecutive quarters (up to eight quarters) with an increase in earnings.

Earnings data are acquired from CSMAR.

(49) operprof : Quarterly operating profit divided by lagged common shareholders’ equity. Related

data are acquired from CSMAR.

(50) orgcap: Capitalized management expenses. This characteristic uses expense data acquired from

CSMAR and is constructed according to the definition in Eisfeldt and Papanikolaou (2013).

Data are acquired from CSMAR.

(51) pchcapx ia: Industry adjusted percentage change in capital expenditure. Data are acquired

from CSMAR.

(52) pchcurrat : Percentage change in current ratio (current liabilities divided by current assets).

Data are acquired from CSMAR.

(53) pchdepr : Percentage change in depreciation. Data are acquired from CSMAR.

(54) pchgm pchsale: Percentage change in gross margin minus Percentage change in sales. Data are

acquired from CSMAR.

(55) pchquick : Percentage change in quick ratio. Data are acquired from CSMAR.

(56) pchsale pchinvt : Quarterly percentage change in sales minus quarterly percentage change in

inventory. Data are acquired from CSMAR.

(57) pchsale pchrect : Quarterly percentage change in sales minus quarterly percentage change in

receivables. Data are acquired from CSMAR.

(58) pchsale pchxsga: Quarterly percentage change in sales minus quarterly percentage change in

management expenses. Data are acquired from CSMAR.

(59) pchsaleinv : Quarterly percentage change in sales-to-inventory. Data are acquired from CS-

MAR.

(60) pctacc: Same as acc except that the numerator is divided by the absolute value of net income; if

net income = 0 then net income set to 0.01 for denominator. Data are acquired from CSMAR.
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(61) pricedelay : The proportion of variation in weekly returns for 36 months ending in month

t explained by four lags of weekly market returns incremental to contemporaneous market

return. Stock returns are acquired from WIND database.

(62) ps: Sum of nine indicator variables that are defined similarly as in Piotroski (2000). Related

data are acquired from CSMAR.

(63) quick : Quick ratio = (current assets - inventory) / current liabilities. Data are acquired from

CSMAR.

(64) rd : An indicator variable equal to 1 if R&D expense as a percentage of total assets has an

increase greater than 5%. Data are acquired from CSMAR.

(65) rd mve: R&D expense divided by end-of-quarter market capitalization. Data are acquired from

CSMAR.

(66) rd sale: R&D expense divided by quarterly sales. Data are acquired from CSMAR.

(67) realestate: Investment real estates divided by fixed assets. Data are acquired from CSMAR.

(68) volatility : Standard deviation of daily returns from month t − 1. Stock returns are acquired

from WIND.

(69) roaq : Income before extraordinary items divided by one quarter lagged total assets. Related

data are acquired from CSMAR.

(70) roavol : Standard deviation of 16 quarters of income before extraordinary items divided by

average total assets. Data are acquired from CSMAR.

(71) roeq : Income before extraordinary items divided by lagged common shareholders’ equity. Re-

lated data are acquired from CSMAR.

(72) roic: Quarterly earnings before interest and taxes minus nonoperating income divided by non-

cash enterprise value. Related data are acquired from CSMAR.

(73) rsup: Sales from quarter t minus sales from quarter t − 1 divided by quarter-end market

capitalization. Related data are acquired from CSMAR.
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(74) salecash: Quarterly sales divided by cash and cash equivalents. Data are acquired from CS-

MAR.

(75) saleinv : Quarterly sales divided by total inventory. Data are acquired from CSMAR.

(76) salerev : Quarterly sales divided by accounts receivable. Data are acquired from CSMAR.

(77) sgr : Quarterly percentage change in sales. Data are acquired from CSMAR.

(78) sp: Quarterly sales divided by quarter-end market capitalization. Data are acquired from

CSMAR.

(79) std dolvol : Monthly standard deviation of daily RMB trading volume. Data are acquired from

CSMAR.

(80) std turn: Monthly standard deviation of daily share turnover. Data are acquired from CSMAR.

(81) stdacc: Standard deviation of 16 quarters of accruals from month t − 16 to t − 1. Data are

acquired from CSMAR.

(82) stdcf : Standard deviation for 16 quarters of net cash flows divided by sales. Data are acquired

from CSMAR.

(83) tang : Cash holdings + 0.715 × receivables + 0.547× inventory + 0.535 × fixed assets/total

assets. Data are acquired from CSMAR.

(84) tb: Tax income, defined as current tax expense divided by enterprise income tax rate in China

(25%), divided by total income. Data are acquired from CSMAR.

(85) turn: Average monthly trading volume for month t − 3 to t − 1 scaled by number of shares

outstanding in month t. Related data are acquired from CSMAR.

(86) zerotrade: Turnover weighted number of zero trading days in month t − 1. Related data are

acquired from CSMAR.

(87) atr : The abnormal turnover ratio (atr) is constructed following the definition in Pan et al.

(2016). Specifically, for stock i in month t, we run the following regression using daily data
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from month t− 7 to t− 1,

DTRi,t = β1 + β2 ×DMRTt +

K∑
j=1

cj ×Dummy Event(j)i,t + εi,t,

where DTRi,t is stock i’s daily turnover ratio, DMRTt is the market turnover ratio, Dummy Event(j),

j = 1, ...,K is a sequence of event dummy variables. The aggregated ε̂i,t for the entire month

t is defined to be the abnormal turnover ratio (atr). Data are acquired from both WIND

database and CSMAR.

(88) er trend : This trend factor is constructed following the definition in Liu et al. (2020). For the

sake of simplicity, we refer readers to the original paper for more details. Data are acquired

from both WIND database and CSMAR.

(89) largestholderrate: Percentage of common shares owned by the largest shareholder. Data are

acquired from CSMAR.

(90) top10holderrate: Percentage of common shares owned by top 10 shareholders. Data are ac-

quired from CSMAR.

(91) soe: A dummy variables that equals 1 if the firm is state-owned. Data are acquired from

CSMAR.

(92) private: A dummy variable that equals 1 if the firm is privately-owned. Data are acquired from

CSMAR.

(93) foreign: A dummy variable that equals 1 if the firm is controlled by foreign investors. Data

are acquired from CSMAR.

(94) others: A dummy variable that equals 1 if the firm is not state-owned, private, or foreign. Data

are acquired from CSMAR.
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C.3 Discussions on accounting treatment in China

In China, listed companies are required to follow the Chinese Accounting Standards (CAS),

a.k.a., the Chinese Generally Accepted Accounting Principles (China GAAP), when running their

businesses. The CAS mainly consist of two sets of accounting standards: (1) the Accounting Stan-

dards for Business Enterprises (ASBEs) for general companies; and (2) the Accounting Standards

for Small-sized Business Enterprises (ASSBEs). We focus on the ASBEs as they are most relevant

to publicly traded companies.

The revised ASBEs were introduced by the Ministry of Finance of the PRC in 2006, which consist

of one Basic Standard, 38 Specific Standards, and the related application guidance. Interestingly,

the ASBEs are more than 90% the same as the International Financial Reporting Standards (IFRS),

making most account titles readily comparable across these two systems.10 In China, all publicly

traded companies are required by the government to follow the ASBEs when filing their financial

statements. It is worth pointing out that even though public companies in China use a set of more

traditional accounting standards before 2006, most account titles needed for signal construction in

our study are still available as of today, and more importantly, comparable to those under the current

ASBEs.11

On the other hand, as the US GAAP are also very similar to the IFRS, most account titles

mentioned in Section C.2 can be clearly linked to their counterparts under the ASBEs. Hence, we

can follow the definitions in the original papers to construct these stock-level characteristics in most

cases. In rare situations, account titles may not directly have their counterparts in the ASBEs,

such as the SG&A expenses. When this happens, we conduct some simple calculations to get their

equivalents under the ASBEs accordingly.

Even though the difference between the ASBEs and the US GAAP looks inessential in our case,

it is still helpful to get a more comprehensive picture of these two systems. There are several key

differences between the ASBEs and the US GAAP. Firstly, the CAS only allow the historical cost

10See Qu and Zhang (2010) for a comprehensive comparison between the ASBEs and the IFRS.
11The ASBEs were first established in 1992 when China began transforming towards a market-oriented economy.

The initial standards absorbed many important contexts from the IFRS but still kept some conventional accounting
practice, especially when dealing with debt. After China entered the WTO, the Ministry of Finance of China issued
the Accounting Regulations for Enterprises in 2000, which was already very close to the current ASBEs.
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valuation method when valuating fixed assets, while the US GAAP allows companies to choose

between the historical cost valuation method and re-evaluating the assets. In this sense, the CAS

are more conservative when dealing with fixed assets. Secondly, regrading inventory, the CAS bans

the usage of the “Last in, First out’ (LIFO) method, which is nevertheless allowed by the US GAAP.

Thirdly, the CAS requires fiscal year in accounts must begin on January 1st, while the US GAAP

let companies to determine the starting date of their fiscal years. Fourthly, companies submit their

financial statements to the government and file their tax returns on a monthly basis in China, while

returns can be filed on a quarterly or bi-monthly basis under US GAAP. Last but not the least, the

CAS stipulate that expenses are classified according to function, whereas the US GAAP generally

classify expenses by nature. Overall, we find that these differences have not changed the construction

of stock-level characteristics much in our empirical study.

Finally, it is worth noting that all publicly traded companies in China are required to provide

a set of complete financial statements in their half-year reports, including the balance sheet, the

income statement, and the cash flow statement, whose formats are the exactly same as that for

annual reports (Accounting Standards for Enterprises No. 32). In addition, a large number of public

companies in China also provide such information in their quarterly reports. In contrast, the US

GAAP only requires public companies to provide a condensed set of financial statements, in which

many account titles are not reported. Although interim statements are not necessarily audited both

in China and the US, the extra financial information may still help investors to learn about companies

better.
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C.4 Classification of stock characteristics

Table C.4

Classification of stock characteristics.

Category Variable

C size mve, mve ia, herf, chinv, chcsho

C beta beta, betasq

C mom mom1m, mom6m, mom12m, mom36m, chmom, er trend, maxret

C liq std dolvol, zerotrade, atr, chaotia, std turn, ill, turn, dolvol, pricedelay

C vol idiovol, ear, volatility, roavol

C own top10holderrate, LargestHolderRate

C bpr bm, bm ia, cfp, cfp ia, sp, cashspr, invest, realestate, depr

C ey roeq, roaq, divo, absacc, divi, salerev, chempia, nincr, chpmia, stdacc, chtx, cash, roic, chpm, stdcf,
chao, dy, acc, pctacc, saleinv, operprof, pchsale pchrect, salecash, tb, gma, pchdepr

C growth egr, orgcap, sgr, pchgm pchsale, rsup, pchsaleinv, rd sale, rd mve, rd, cinvest, pchsale pchxsga,
pchsale pchinvt, agr, grCAPX, hire

C lever lev, pchquick, pchcapx ia, lgr, quick, ps, tang, currat, ms, pchcurrat, cashdebt
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Table C.5

Details on Macroeconomic State Variables.

Acronym Variable Definition Frequency Reference

dp Dividend Price Ratio Dividends are 12-month
moving sums of dividends
paid in the A-share market.
The dividend price ratio is
the difference between the
log of dividends and the log
of weighted average stock
price in China’s A-share
market.

Monthly Welch (2008), Gu et al.
(2020)

de Dividend Payout Ratio The dividend payout ratio
is the difference between the
log of dividends and the
log of earnings of all stocks
listed in China’s A-share
market.

Annual Welch (2008), Gu et al.
(2020)

bm Book-to-Market Ratio The book-to-market ratio is
the ratio of book value to
market value for all stocks
listed in China’s A-share
market.

Monthly Welch (2008), Gu et al.
(2020)

svar Stock Variance The stock variance is com-
puted as sum of squared
daily returns on the SSE
Composite Index.

Monthly Welch (2008), Gu et al.
(2020)

ep Earnings Price Ratio Earnings are 12-month mov-
ing sums of earnings of all
stocks in the China’s A-
share market. The earnings
price ratio is the difference
between the log of weighted
average earnings per share
and the log of weighted av-
erage stock price in China’s
A-share market.

Monthly Welch (2008), Gu et al.
(2020)
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Table C.5.

Details on macroeconomic state variables (continued)

Acronym Variable Definition Frequency Reference

ntis Net Equity Expansion The net equity expansion
is the ratio of 12-month
moving sums of net issues
in China’s A-share market
divided by the total end-
of-year market capitaliza-
tion of A-share stocks.

Monthly Welch (2008), Gu et al.
(2020)

tms Term Spread The term spread is the
difference between the
yield on 10-year govern-
ment bond and the 1-year
government bond.

Monthly Welch (2008), Gu et al.
(2020)

infl Inflation The inflation is the
monthly consumer price
index from 2000-2020
from the National Bureau
of Statistics of China.

Monthly Welch (2008), Gu et al.
(2020)

mtr Monthly Turnover The monthly turnover is
the ratio of monthly trad-
ing volume measured in
Chinese yuan to the av-
erage daily market value
of all stocks in China’s A-
share market.

Monthly Baker and Stein (2004)

m2gr M2 Growth Rate The monthly M2 growth
rate (YoY) from 2000 to
2020 is from the National
Bureau of Statistics of
China.

Monthly Chen (2009)

itgr International Trade Vol-
ume Growth Rate

The international trade
volume growth rate (YoY)
from 2000 to 2020 is from
the National Bureau of
Statistics of China.

Monthly Rapach et al. (2013)
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D Time variations of R2
oos and variable importance

To obtain a better understanding of model predictability, we also explore the time variations in

the out-of-sample R2
oos of our models. In Fig. D.1, we plot the yearly out-of-sample R2

oos, which we

define as:

R2
oos,S(t) = 1−

∑
i∈It(ri,t − r̂

(S)
i,t )2∑

i∈It r
2
i,t

, (A.17)

where It is the set of tradable stocks in year t in the testing sample.

We make two observations. First, all models, except GBRT, experience a significant drop in

R2
oos in 2018. In that year, all models excluding GBRT produce negative R2

oos, indicating that

näıve predictions of zero returns would have beaten them. However, the dysfunctionality of machine

learning models in 2018 is likely due to the Chinese stock market’s persistent fall caused by the

severe trade conflicts between China and the US. This finding points out a potential weakness for

machine learning techniques when predicting stock returns: their performances can be vulnerable to

unexpected systematic risk, such as, in this case, the political risk related to a trade war between the

US and China. From this perspective, it is even more surprising that GBRT still achieves a positive

out-of-sample R2
oos in 2018, which is even larger than those in other periods. We conjecture that

its generic model properties cause GBRT’s unusual performance. For example, if the model heavily

relies on predictors relating to price trends, it may still generate a good performance in 2018. Still,

compared to other machine learning methods such as neural networks, GBRT generally produces a

lower out-of-sample R2 in periods other than 2018.

Second, regularized linear models and VASA based on linear submodels not only produce negative

R2
ooss in 2018 but also in 2017. In 2017, the Chinese stock market went through a persistent boom

for large stocks as the CSI 300 Index12 increased by almost 30%, and most large stocks had positive

returns in almost every month. As noted previously, monthly returns of large stocks in the Chinese

market are more challenging to predict, especially for linear models, which is likely why PLS, LASSO,

Enet, and VASA attain negative R2
ooss in 2017. On the other hand, neural networks, especially NN2,

NN4, and NN5, produce positive R2
ooss in 2017, indicating their prediction performance is quite

12The CSI 300 is a capitalization-weighted stock market index designed to replicate the performance of the top 300
stocks traded on the Shanghai Stock Exchange and the Shenzhen Stock Exchange.
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robust to specific market conditions associated with certain subgroups of stocks.

In Fig. D.2, we take a closer look at the time variability of the variable importance for NN4.
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Figure D.1. Annual out-of-sample predictive R2.

This figure shows annual out-of-sample predictive R2 for each model during the period of 2012-2020.
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Figure D.2. Characteristic importance for NN4.
This figure shows the ordering of all stock-level characteristics ranked by NN4 across the different years.
The vertical axis gives the orderings of the NN4-specific R2-based variable importance, which is defined
similarly as in Fig. 2 in the main text. The horizontal axis indicates the periods in the testing sample, and
the color gradient in each column reflects the explanatory power of predictors in a given evaluation period.
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E Equal-weighted portfolio analysis

Table E.6

Performance of machine learning portfolios (equal-weighted). This table reports the out-of-sample performance
measures for all machine learning models of the equally-weighted long-short and long-only based on the full
sample. All measures are based on 103 monthly out-of-sample returns from January 2012 to June 2020.
“Avg”: average predicted monthly return (%). “Std”: the standard deviation of monthly predicted monthly
returns (%). “S.R.”: Sharpe ratio. “Skew”: skewness. “Kurt”: kurtosis. “Max DD”: the portfolio maximum
drawdowns (%). “Max 1M Loss”: the most extreme negative monthly return (%).

Machine Learning Portfolios

“1/N ” OLS-3 PLS LASSO Enet GBRT RF VASA NN1 NN2 NN3 NN4 NN5
Portfolio +H +H +H +H

Long-Short
Avg − 1.50 4.06 4.80 4.88 4.06 3.27 5.14 5.46 5.45 5.80 5.95 5.93
Std − 4.49 4.69 5.17 5.22 5.02 4.12 5.29 4.72 4.51 5.01 5.02 4.95
S.R. − 1.15 3.00 3.21 3.24 2.80 2.75 3.36 4.01 4.18 4.00 4.10 4.15
Skew − 0.16 −0.44 1.29 0.76 1.11 −0.20 1.01 2.14 1.08 1.95 2.66 1.88
Kurt − 0.37 1.61 6.80 6.27 0.93 0.65 6.22 9.65 3.29 8.81 13.87 7.93
Max DD − 34.04 14.12 9.07 16.58 13.67 9.86 10.60 4.12 3.86 4.64 4.51 4.49
Max 1M Loss − 11.40 14.12 9.07 15.26 8.83 9.69 10.60 3.25 3.86 4.64 3.45 4.49

Long-Only
Avg 1.56 2.24 3.67 4.05 4.20 3.83 3.48 4.38 4.50 4.45 4.74 4.91 4.85
Std 8.44 9.16 7.75 9.08 9.22 8.40 8.50 9.14 9.55 8.73 9.29 9.57 9.71
S.R. 0.64 0.85 1.64 1.54 1.58 1.58 1.42 1.66 1.63 1.77 1.79 1.78 1.73
Skew 0.26 0.57 0.26 1.09 1.05 0.56 0.54 0.99 1.20 0.89 1.20 1.36 1.31
Kurt 1.26 1.38 1.50 4.86 4.50 3.09 1.05 4.38 5.24 3.97 5.41 5.49 5.43
Max DD 54.20 45.35 23.55 23.45 23.03 27.84 27.11 23.12 22.62 21.79 23.23 20.80 21.73
Max 1M Loss 25.56 22.89 20.82 21.85 22.42 23.39 20.25 21.99 22.62 21.26 22.33 19.45 20.11
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E.1 Ex ante selection of machine learning methods

A practical problem of real-world investment is to select the best prediction method ex ante,

which is especially relevant when the number of candidate models is large. We consider two model

selection procedures and report their performance for the testing sample. The first one is via simple

model averaging. We first predict monthly returns for all stocks using 11 machine learning methods

(PLS-NN5) and then construct the long-short and long-only portfolios based on the average predicted

stock returns. We report the out-of-sample performance for the model-averaging portfolios in Table

E.7, which shows that this procedure works well in the Chinese market. For example, the model-

averaging long-only portfolio achieves a Sharpe ratio of 1.76, which is in line with the highest Sharp

ratio for a single method shown in Table 6 in the main text.

Table E.7

Performance of the model-averaging portfolio (value-weighted). This table reports the out-of-sample perfor-
mance measures for the model-averaging portfolio based on the full sample. All measures are based on 103
monthly out-of-sample returns from January 2012 to June 2020. “Avg”: average predicted monthly return
(%). “Std”: the standard deviation of monthly predicted monthly returns (%). “S.R.”: annualized Sharpe
ratio. “Skew”: skewness. “Kurt”: kurtosis. “Max DD”: the portfolio maximum drawdowns (%). “Max 1M
Loss”: the most extreme negative monthly return (%).

Portfolio Avg Std S.R. Skew Kurt Max DD Max 1M

Long-short 5.10 5.76 3.06 1.02 4.24 8.51 8.51
Long-only 4.24 8.36 1.76 1.31 6.08 20.63 19.81

The second procedure utilizes the CSPA test to select the method that performs the best con-

ditional on the current macroeconomic condition. Given a pre-specified conditioning variable and

the benchmark model, we estimate the conditional expected loss differential functions and the corre-

sponding confidence bounds using the out-of-sample predictions in the testing sample on an annual

basis. These plots then form a decision rule for selecting the forecast method month by month.

More precisely, given the current macroeconomic condition Xt, the benchmark model is selected if

the estimated loss differential to all other models is positive. If a loss differential is significantly

negative for a set of alternative models, we chose the model with the most negative loss differential.

In Fig. E.3, we plot the selected models for different conditioning variables across time when
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Figure E.3. Dynamic model selection based on CSPA test

This figure shows the monthly model selection based on the CSPA test and the prevailing value of
the conditioning variable. The diamond markers represent the model when using directly the change
in the loss function, and the circles represent the models when requiring a 10% confidence level.
Portfolio formation starts in January 2013 and ends in June 2020.

we choose NN4 as our benchmark model for the full sample. We either use the direct change in

the loss function or its 90% confidence bound as a decision rule for model selection. At the end of

each month, we check whether the expected loss differential or its 90% confidence bound is below

zero at the conditioning variable’s actual value. If this is the case, we switch to the model with

the largest negative loss differential and use that model for investing in the following month. The

resulting model choices are plotted in Fig. E.3 as blue diamonds (when using the expected loss

differential) and red circles (when using the 90% confidence bound). Clearly, using the confidence

bound for the decision rule provides some additional robustness. Under this rule, there are only a few

deviations from the benchmark model. Interestingly, these deviations happen for most conditioning

variables during 2015, when the Chinese market is in a crisis. During that time, the CSPA-based

model selection particularly favors Lasso and, to some extent, GBRT. When using the expected loss
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differential, the model selection varies much more, but with some preferred candidates like NN1,

GBRT, and VASA.

To explore whether the aforementioned ex-ante model selection rule also provides satisfying per-

formance, we analyze the long-short and the long-only strategy for the full sample. Table E.8 reports

the results. For the long-short strategy, we find that using the CSPA-based selection criterion is

highly beneficial compared to the model-averaging approach in Table E.7. The long-short portfolio

performs best when we take the confidence bound as a decision criterion across the six conditioning

variables examined; the average Sharpe ratio is 4.34, compared to a Sharpe ratio of 3.06 in Table 10

in the main text. Even if we take the expected loss differential, we still get an average Sharpe ratio

of 3.9. The portfolios perform better than average when we condition on infl, bm, and dp.

Table E.8

Performance of CSPA-based model selection portfolios (value-weighted). This table reports the out-of-sample
performance measures for the CSPA-based portfolio based on the full sample. All measures are based on 91
monthly out-of-sample returns from January 2013 to June 2020. “Avg”: average predicted monthly return
(%). “Std”: the standard deviation of monthly predicted monthly returns (%). “S.R.”: annualized Sharpe
ratio. “Skew”: skewness. “Kurt”: kurtosis. “Max DD”: the portfolio maximum drawdowns (%). “Max 1M
Loss”: the most extreme negative monthly return (%).

infl m2gr mtr svar bm dp infl m2gr mtr svar bm dp

Long-short Long-short, 10%
Avg 4.54 4.88 4.80 5.17 5.08 4.98 5.67 6.10 5.96 5.39 5.64 5.74
Std 4.57 4.34 4.11 5.06 3.83 4.43 3.83 5.36 5.21 5.56 3.81 4.38
S.R. 3.44 3.89 4.05 3.54 4.59 3.89 5.13 3.94 3.96 3.35 5.12 4.53
Skew -0.20 0.42 0.11 0.02 0.56 -0.05 0.49 2.36 2.66 0.88 0.53 0.12
Kurt 3.57 3.19 4.48 3.29 3.08 3.93 3.37 14.07 16.00 7.86 3.45 4.20
Max DD 18.62 4.46 8.62 7.94 3.79 8.67 4.43 4.43 4.43 8.62 4.43 8.67
Max 1M 9.01 3.47 9.01 7.98 3.86 9.07 3.47 3.47 3.47 9.01 3.47 9.07

Long-only Long-only, 10%
Avg 4.13 4.26 4.28 4.46 4.27 4.40 4.67 5.07 4.87 4.64 4.63 4.74
Std 8.59 8.62 8.67 8.46 8.99 8.94 8.98 9.81 9.77 9.30 8.94 8.73
S.R. 1.67 1.71 1.71 1.82 1.65 1.70 1.80 1.79 1.73 1.73 1.79 1.88
Skew 0.35 0.61 0.41 0.52 0.42 0.68 0.43 1.40 1.36 1.18 0.41 0.44
Kurt 4.19 4.25 4.30 4.39 3.97 5.11 4.00 8.29 8.72 7.27 3.96 4.12
Max DD 25.49 19.55 24.05 20.05 25.74 20.30 23.91 18.81 20.92 20.05 23.91 18.73
Max 1M 20.25 19.46 20.25 19.46 20.25 20.25 19.46 19.46 22.61 19.46 19.46 19.46

A similar conclusion holds when we investigate the performance of the long-only strategies. How-

ever, it turns out that the superiority of the CSPA-based selection versus the model-averaging ap-

39



proach vanishes. When we select models based on the 90% confidence bound, the average Sharpe

ratio is 1.79, only slightly above the Sharpe ratio of 1.76 for the model-averaging approach. Using

the expected loss differential even leads to a slightly underperforming average Sharpe ratio of 1.71.

Hence, for the long-only portfolio, the two ex-ante selection strategies lead to a similar performance.

Nevertheless, the long-only portfolios, infl, bm, and dp, perform well if we use the confidence bound

as the decision criterion. Therefore, it would be interesting to explore the role of the conditioning

variable further. We leave this issue as a potential avenue for future research.
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