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Hundreds of papers and factors attempt to explain the cross-section of expected returns.
Given this extensive data mining, it does not make sense to use the usual criteria for
establishing significance. Which hurdle should be used for current research? Our paper
introduces a new multiple testing framework and provides historical cutoffs from the first
empirical tests in 1967 to today. A new factor needs to clear a much higher hurdle, with
a t-statistic greater than 3.0. We argue that most claimed research findings in financial
economics are likely false. (JEL C12, C52, G12)
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Over forty years ago, one of the first tests of the capital asset pricing model
(CAPM) found that the market beta was a significant explanator of the cross-
section of expected returns. The reported t-statistic of 2.57 in Fama and
MacBeth (1973, Table III) comfortably exceeded the usual cutoff of 2.0.
However, since that time, hundreds of papers have tried to explain the cross-
section of expected returns. Given the known number of factors that have been
tried and the reasonable assumption that many more factors have been tried but
did not make it to publication, the usual cutoff levels for statistical significance
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may not be appropriate. We present a new framework that allows for multiple
tests and derive recommended statistical significance levels for current research
in asset pricing.

We begin with 313 papers published in a selection of journals that study
cross-sectional return patterns. We provide recommended test thresholds from
the first empirical tests in 1967 to present day. We also project minimum t-
statistics through 2032, assuming the rate of “factor production” remains the
same as the last ten years. We present a taxonomy of historical factors, as well
as definitions.1

Our research is related to a recent paper by McLean and Pontiff (2015),
who argue that certain stock market anomalies are less anomalous after being
published.2 Their paper tests the statistical biases emphasized in Leamer
(1978), Ross (1989), Lo and Mackinlay (1990), Fama (1991), and Schwert
(2003).

Our paper also adds to the recent literature on biases and inefficiencies
in cross-sectional regression studies. Lewellen, Nagel, and Shanken (2010)
critique the usual practice of using cross-sectional R2s and pricing errors
to judge success and show that the explanatory power of many previously
documented factors are spurious. Our work focuses on evaluating the statistical
significance of a factor given the previous tests on other factors. Our goal is
to use a multiple testing framework to both re-evaluate past research and to
provide a new benchmark for current and future research.

We tackle multiple hypothesis testing from the frequentist perspective.
Bayesian approaches to multiple testing and variable selection also exist.3

However, the high dimensionality of the problem combined with the fact
that we do not observe all the factors that have been tried poses a big
challenge for Bayesian methods. While we propose a frequentist approach to
overcome this missing data issue, it is unclear how to do this in the Bayesian
framework. Nonetheless, we provide a detailed discussion of Bayesian methods
in paper.

Multiple testing has only recently gained traction in the finance literature.
For the literature on multiple testing corrections for data snooping biases,
see Sullivan, Timmermann, and White (1999, 2001) and White (2000). For
research on data snooping and variable selection in predictive regressions,
see Foster, Smith, and Whaley (1997), Cooper and Gulen (2006), and Lynch
and Vital-Ahuja (2012). For applications of multiple testing approach in the
finance literature, see, for example, Shanken (1990), Ferson and Harvey (1999),

1 We also provide a link to a file with full references and Web addresses to the original articles: http://faculty.fuqua.
duke.edu/∼charvey/Factor-List.xlsx.

2 Other recent papers that systematically study the cross-sectional return patterns include those by Subrahmanyam
(2010) and Green, Hand, and Zhang (2013a, 2013b). Other papers that study anomaly discoveries and investor
actions include those by Edelen, Ince, and Kadlec (2014) and Liu et al. (2014).

3 See Jefferys and Berger (1992), Scott and Berger (2006), and Scott (2009).
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Boudoukh et al. (2007), and Patton and Timmermann (2010). More recently, a
multiple testing connection has been used to study technical trading and mutual
fund performance, see, for example, Barras, Scaillet, and Wermers (2010),
Bajgrowicz and Scaillet (2012), and Kosowski et al. (2006). Conrad, Cooper,
and Kaul (2003) point out that data snooping accounts for a large proportion
of the return differential between equity portfolios that are sorted by firm
characteristics. Bajgrowicz, Scaillet, and Treccani (2013) show that multiple
testing methods help eliminate a large proportion of spurious jumps detected
using conventional test statistics for high-frequency data. Holland, Basu,
and Sun (2010) emphasize the importance of multiple testing in accounting
research. Our paper is consistent with the theme of this literature.

There are limitations to our framework. First, should all factor discoveries be
treated equally? We think no.Afactor derived from a theory should have a lower
hurdle than a factor discovered from a purely empirical exercise. Economic
theories are based on a few economic principles and, as a result, there is less
room for data mining. Nevertheless, whether suggested by theory or empirical
work, a t-statistic of 2.0 is too low. Second, our tests focus on unconditional
tests. While the unconditional test might consider the factor marginal, it is
possible that this factor is very important in certain economic environments
and not important in other environments. These two caveats need to be taken
into account when using our recommended significance levels for current asset
pricing research.

While our focus is on the cross-section of equity returns, our message applies
to many different areas of finance. For instance, Frank and Goyal (2009)
investigate around thirty variables that have been documented to explain the
capital structure decisions of public firms. Welch and Goyal (2008) examine
the performance of a dozen variables that have been shown to predict market
excess returns. Novy-Marx (2014) proposes unconventional variables to predict
anomaly returns. These three applications are ideal settings to employ multiple
testing methods.

1. The Search Process

Our goal is not to catalog every asset pricing paper ever published. We narrow
the focus to papers that propose and test new factors. For example, Sharpe
(1964), Lintner (1965), and Mossin (1966) all theoretically proposed (at roughly
the same time), a single-factor model—the capital asset pricing model (CAPM).
Following Fama and MacBeth (1973), there are hundreds of papers that test the
CAPM. We include the theoretical papers, as well as the first paper to provide
test statistics. We do not include the hundreds of papers that test the CAPM
in different contexts, for example, various international markets and different
time periods. We do, however, include papers, such as Kraus and Litzenberger
(1976), who test the market factor, as well as one additional risk factor linked
to the market factor.
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Sometimes different papers propose different empirical proxies for the same
type of economic risk. Although they may look similar from a theoretical
standpoint, we still include them. An example is the empirical proxies for
idiosyncratic financial constraints risk. While Lamont, Polk, and Saa-Requejo
(2001) use the Kaplan and Zingales (1997) index to proxy for firm-level
financial constraints, Whited and Wu (2006) estimate their own constraint index
based on the first-order conditions of firms’ optimization problem. We include
both even though they are likely highly correlated.

Since our focus is on factors that can broadly explain return patterns, we
omit papers that focus on a small group of stocks or a short period of time. This
will, for example, exclude a substantial amount of empirical corporate finance
research that studies event-driven return movements.4

Certain theoretical models lack immediate empirical content. Although they
could be empirically relevant once suitable proxies are constructed, we choose
to exclude them.

With these rules in mind, we narrow our search to generally the top journals
in finance, economics, and accounting. To include the most recent research, we
search for working papers on the Social Science Research Network (SSRN).
Working papers pose a challenge because there are thousands of them, and they
have not been subjected to peer review. We choose a subset of papers that we
suspect are in review at top journals, have been presented at top conferences,
or are due to be presented at top conferences. We end with 63 working papers.
In total, we focus on 313 articles, among which are 250 published articles. We
catalogue 316 different factors.5

Our collection of 316 factors likely underrepresents the factor population.
First, we generally only consider top journals. Second, we are selective in
choosing only a handful of working papers. Third, sometimes there are many
variants of the same characteristic, and we usually only include the most
representative ones. Fourth, and perhaps most importantly, we should be
measuring the number of factors tested (which is unobservable)—that is, we
do not observe the factors that were tested but that failed to pass the usual
significance levels and were never published (see Fama 1991). Our multiple
testing framework tries to account for this possibility.

4 See Kothari and Warner (2007) for a survey on event studies. More specifically, three criteria help differentiate
our risk factors from event signals in corporate finance. First, while we are generally considering returns realized
at the monthly or lower frequency intervals for risk factors, it is routine for event studies to consider daily or even
higher frequency returns. Second, portfolio sorts based on risk factors typically cover the entire cross-section of
stocks, whereas event studies usually focus on a much smaller group of securities that are affected by the event
signal. Finally, portfolio sorts based on risk factors are usually repeated at a fixed time interval, whereas events
may happen sporadically.

5 As already mentioned, some of these factors are highly correlated. For example, we include four versions of
idiosyncratic volatility, that is, Fama and MacBeth (1973), Ali, Hwang, and Trombley (2003), Ang et al. (2006),
and Fu (2009).
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2. Factor Taxonomy

To facilitate our analysis, we group the factors into different categories. We start
with two broad categories: “common” and individual firm “characteristics.”
“Common” means the factor can be viewed as a proxy for a common source of
risk. Risk exposure to this factor or its innovations is supposed to help explain
cross-sectional return patterns. “Characteristics” means the factor is specific
to the security or portfolio. A good example is Fama and MacBeth (1973).
While the beta against the market return is systematic (exposure to a common
risk factor), the standard deviation of the market model residual is not based
on a common factor—it is a property of the individual firm, that is, it is an
idiosyncratic characteristic.

Strictly speaking, a risk factor should be a variable that has unpredictable
variation through time. Moreover, assets’ risk exposures to this factor need
to be able to explain the cross-sectional return patterns. Based on these
criteria, individual firm characteristics should not qualify as risk factors
because characteristics are preknown and have limited time-series variation.
However, we interpret firm characteristics in a broader sense. If a certain firm
characteristic is found to be correlated with the cross-section of expected
returns, a long-short portfolio can usually be constructed to proxy for the
underlying unknown risk factor. It is this unknown risk factor that we have
in mind when we classify particular firm characteristics as risk factors.

Based on the unique properties of the proposed factors, we further divide the
“common” and “characteristics” groups into finer categories. In particular, we
divide “common” into “financial,” “macro,” “microstructure,” “behavioral,”
“accounting,” and “other.” We divide “characteristics” into the same categories,
except we omit the “macro” classification, which is common, by definition. The
following table provides further details on the definitions of these subcategories
and gives examples for each.

3. Adjusted t-statistics in Multiple Testing

3.1 Why multiple testing?
Given that so many papers have attempted to explain the same cross-section
of expected returns, statistical inference should not be based on a “single” test
perspective. Our goal is to provide guidance as to the appropriate significance
level using a multiple testing framework. When just one hypothesis is tested,
we use the term “individual test,” “single test,” and “independent test”
interchangeably.6

Strictly speaking, different papers study different sample periods and hence
focus on different cross-sections of expected returns. However, the bulk of the
papers we consider have substantial overlapping sample periods. Also, if one

6 The last term should not be confused with any sort of stochastic independence.
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Table 1
Factor classification

Risk type Description Examples

Common
(113)

Financial
(46)

Proxy for aggregate financial market movement, including market
portfolio returns, volatility, squared market returns, among others

Sharpe (1964): market returns; Kraus and Litzenberger (1976): squared
market returns

Macro
(40)

Proxy for movement in macroeconomic fundamentals, including
consumption, investment, inflation, among others

Breeden (1979): consumption growth; Cochrane (1991): investment
returns

Microstructure
(11)

Proxy for aggregate movements in market microstructure or financial
market frictions, including liquidity, transaction costs, among others

Pastor and Stambaugh (2003): market liquidity; Lo and Wang (2006):
market trading volume

Behavioral
(3)

Proxy for aggregate movements in investor behavior, sentiment or
behavior-driven systematic mispricing

Baker and Wurgler (2006): investor sentiment; Hirshleifer and Jiang
(2010): market mispricing

Accounting
(8)

Proxy for aggregate movement in firm-level accounting variables,
including payout yield, cash flow, among others

Fama and French (1992): size and book-to-market; Da and Warachka
(2009): cash flow

Other
(5)

Proxy for aggregate movements that do not fall into the above
categories, including momentum, investors’ beliefs, among others

Carhart (1997): return momentum; Ozoguz (2009): investors’ beliefs

Characteristics
(202)

Financial
(61)

Proxy for firm-level idiosyncratic financial risks, including volatility,
extreme returns, among others

Ang et al. (2006): idiosyncratic volatility; Bali, Cakici, and Whitelaw
(2011): extreme stock returns

Microstructure
(28)

Proxy for firm-level financial market frictions, including short sale
restrictions, transaction costs, among others

Jarrow (1980): short sale restrictions; Mayshar (1981): transaction costs

Behavioral
(3)

Proxy for firm-level behavioral biases, including analyst dispersion,
media coverage, among others

Diether, Malloy, and Scherbina (2002): analyst dispersion; Fang and
Peress (2009): media coverage

Accounting
(87)

Proxy for firm-level accounting variables, including PE ratio,
debt-to-equity ratio, among others

Basu (1977): PE ratio; Bhandari (1988): debt-to-equity ratio

Other
(24)

Proxy for firm-level variables that do not fall into the above categories,
including political campaign contributions, ranking-related firm
intangibles, among others

Cooper, Gulen, and Ovtchinnikov (2010): political campaign
contributions; Edmans (2011): intangibles

The numbers in parentheses represent the number of factors identified. See Table 6 and http://faculty.fuqua.duke.edu/∼charvey/Factor-List.xlsx.
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believes that cross-sectional return patterns are stationary, then these papers are
studying roughly the same cross-section of expected returns.

We want to emphasize that there are many forces that make our guidance
lenient; that is, a credible case can be made for an even higher threshold for
discovery. We have already mentioned that we only sample a subset of research
papers and the “publication bias/hidden tests” issue (i.e., it is difficult to publish
a nonresult).7 However, there is another publication bias that is more subtle.
In many scientific fields, replication studies routinely appear in top journals.
That is, a factor is discovered, and others try to replicate it. In finance and
economics, it is very difficult to publish replication studies. Hence, there is
a bias towards publishing “new” factors rather than rigorously verifying the
existence of discovered factors.

There are two ways to deal with the bias introduced by multiple
testing: out-of-sample validation and using a statistical framework that
allows for multiple testing.8 When feasible, out-of-sample testing is the
cleanest way to rule out spurious factors. In their study of anomalies,
McLean and Pontiff (2015) take the out-of-sample approach. Their results show
a degradation of performance of identified anomalies after publication, which
is consistent with the statistical bias. It is possible that this degradation is larger
than they document. In particular, they drop 12 of their 97 anomalies because
they could not replicate the in-sample performance of published studies. Given
that these nonreplicable anomalies were not even able to survive routine data
revisions, they are likely to be insignificant strategies, either in-sample or out-
of-sample. The degradation from the original published “alpha” is 100% for
these strategies, which would lead to a higher average rate of degradation for
their strategies.

While the out-of-sample approach has many strengths, it has one important
drawback: it cannot be used in real time. To make real time assessments in the
out-of-sample approach, it is common to hold out some data. However, this is
not genuine out-of-sample testing as all the data are observable to researchers.A
real out-of-sample test requires data in the future. In contrast to many tests in the
physical sciences (where new data can be created for an experiment), we often
need years of data to do an out-of-sample test. We pursue the multiple testing
framework because it yields immediate guidance on whether a discovered factor
is real.

3.2 A multiple testing framework
In statistics, multiple testing refers to simultaneous testing of more than one
hypothesis. The statistics literature was aware of this multiplicity problem at

7 See Rosenthal (1979) for one of the earliest and most influential works on publication bias.

8 Another approach to test factor robustness is to look across multiple asset classes. This approach has been
followed in several recent papers, for example, Asness et al. (2013) and Koijen et al. (2012).
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Table 2
Contingency table in testing M hypotheses

Panel A: An example

Unpublished Published Total

Truly insignificant 500 50 550
Truly significant 100 50 150
Total 600 100(R) 700(M)

Panel B: The testing framework

H0 not rejected H0 rejected Total

H0 true N0|a N0|r M0
H0 false N1|a N1|r M1
Total M−R R M

PanelAshows a hypothetical example for factor testing. Panel B presents the corresponding notation in a standard
multiple testing framework.

least 60 years ago.9 Early generations of multiple testing procedures focus on
the control of the family-wise error rate (see Section 4.3.1). More recently,
increasing interest in multiple testing from the medical literature has spurred
the development of methods that control the false discovery rate (see Section
4.3.2). Multiple testing is an active research area in both the statistics and the
medical literature.10

Despite the rapid development of multiple testing methods, they have not
attracted much attention in the finance literature. Moreover, most of the research
that does involve multiple testing focuses on the Bonferroni adjustment,11

which is known to be too stringent. Our paper aims to fill this gap.
First, we introduce a hypothetical example to motivate a more general

framework. In Table 2, we categorize the possible outcomes of a multiple
testing exercise. Panel A displays an example of what the literature could have
discovered, and panel B notationalizes panelAto ease our subsequent definition
of the general type I error rate—the chance of making at least one false discovery
or the expected fraction of false discoveries.

Our example in panel A assumes 100 published factors (denoted as R).
Among these factors, suppose 50 are false discoveries and the rest are real
ones. In addition, researchers have tried 600 other factors, but none were found
to be significant. Among them, 500 are truly insignificant, but the other 100 are
true factors. The total number of tests (M) is 700. Two types of mistakes are
made in this process: 50 factors are falsely discovered to be true (type I error or
false positive), while 100 true factors are buried in unpublished work (type II
error or false negative). The usual statistical control in a multiple testing context
aims at reducing “50” or “50/100,” the absolute or proportionate occurrence of

9 For early research on multiple testing, see Tukey (1951, 1953) for Tukey’s range test and Scheffé (1959) for
Scheffé’s method on adjusting significance levels in a multiple regression context.

10 See Shaffer (1995) for a review of multiple testing procedures that control for the family-wise error rate. See
Farcomeni (2007) for a review that focuses on procedures that control the false-discovery rate.

11 See Shanken (1990), Ferson and Harvey (1999), and Boudoukh et al. (2007).
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false discoveries, respectively. Of course, we only observe published factors
because factors that are tried and found to be insignificant rarely make it to
publication.12 This poses a challenge since the usual statistical techniques only
handle the case in which all test results are observable.

Panel B defines the corresponding terms in a formal statistical testing
framework. In a factor testing exercise, the typical null hypothesis is that a
factor is not significant. Therefore, a factor being insignificant means the null
hypothesis is “true.” Using “0” (“1”) to indicate the null is true (false) and
“a” (“r”) to indicate “not reject” (“reject”), we can easily summarize panel
A. For instance, N0|r measures the number of rejections when the null is true
(i.e., the number of false discoveries) and N1|a measures the number of failed
rejections when the null is false (i.e. the number of missed discoveries). To
avoid confusion, we try not to use standard statistical language in describing
our notation but rather use words unique to our factor testing context. The
generic notation in panel B is convenient in formally defining different types
of errors and describing adjustment procedures in subsequent sections.

3.3 Type I and type II errors
For a single hypothesis test, a value α is used to control type I error rate:
the probability of finding a factor to be significant when it is not. The α is
sometimes called the “level of significance.” In a multiple testing framework,
restricting each individual test’s type I error rate at α is not enough to control
the overall probability of false discoveries. The intuition is that, under the null
that all factors are insignificant, it is very likely for an event with α probability
to occur when many factors are tested. In multiple hypothesis testing, we need
measures of the type I error that help us simultaneously evaluate the outcomes
of many individual tests.

To gain some intuition about plausible measures of type I error, we return to
panel B of Table 2. N0|r and N1|a count the total number of the two types of
errors: N0|r counts false discoveries, while N1|a counts missed discoveries.
As generalized from single hypothesis testing, the type I error in multiple
hypothesis testing is also related to false discoveries, by which we conclude
a factor is “significant” when it is not. But, by definition, we must draw
several conclusions in multiple hypothesis testing, and there is a possible false
discovery for each. Therefore, plausible definitions of the type I error should
take into account the joint occurrence of false discoveries.

The literature has adopted at least two ways of summarizing the “joint
occurrence.” One approach is to count the total number of false discoveries

12 Examples of the publication of unsuccessful factors include Fama and MacBeth (1973) and Ferson and Harvey
(1993). Fama and MacBeth (1973) show that squared beta and standard deviation of the market model residual
have an insignificant role in explaining the cross-section of expected returns. However, the inclusion of these
two variables was a result of a falsification experiment rather than a search for new factors. Overall, it is rare
to publish “nonresults” and all instances of published nonresults are coupled with significant results for other
factors.
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N0|r . N0|r greater than zero suggests incorrect statistical inference for the
overall multiple testing problem—the occurrence of which we should limit.
Therefore, the probability of event N0|r >0 should be a meaningful quantity
for us to control. Indeed, this is the intuition behind the family-wise error rate
introduced later. On the other hand, when the total number of discoveries R is
large, one or even a few false discoveries may be tolerable. In this case, N0|r
is no longer a suitable measure; a certain false discovery proportion may be
more desirable. Unsurprisingly, the expected value of N0|r/R is the focus of
false discovery rate, the second type of control.

3.3.1 Family-wise error rate. The two aforementioned measures are the
most widely used in the statistics literature. Moreover, many other techniques
can be viewed as extensions of these measures. Holm (1979) is the first to
formally define the family-wise error rate. Benjamini and Hochberg (1995)
define and study the false discovery rate. Alternative definitions of error rate
include per comparison error rate (Saville 1990), positive false discovery rate
(Storey 2003), and generalized false discovery rate (Sarkar and Guo 2009). We
now describe the two leading approaches in detail.

The family-wise error rate (FWER) is the probability of at least one type I
error:

FWER=Pr(N0|r ≥1).

FWER measures the probability of even a single false discovery, regardless
of the total number of tests. For instance, researchers might test 100 factors;
FWER measures the probability of incorrectly identifying one or more factors
to be significant. Given significance or threshold level α, we explore two
existing methods (Bonferroni and Holm’s adjustment) to ensure FWER does
not exceed α. Even as the number of trials increases, FWER still measures the
probability of at least one false discovery. This absolute control is in contrast
to the proportionate control afforded by the false discovery rate (FDR), defined
below.

3.3.2 False discovery rate. The false discovery proportion (FDP) is the
proportion of type I errors:

FDP=

⎧⎪⎨
⎪⎩

N0|r
R

if R>0,

0 if R =0.

The false discovery rate (FDR) is defined as

FDR=E[FDP].

FDR measures the expected proportion of false discoveries among all
discoveries. It is less stringent (i.e., leads to more discoveries) than FWER

14

D
ow

nloaded from
 https://academ

ic.oup.com
/rfs/article/29/1/5/1843824 by guest on 20 February 2022



… and the Cross-Section of Expected Returns

and usually much less so when many tests are performed.13 Intuitively, this is
because FDR allows N0|r to grow in proportion to R, whereas FWER measures
the probability of making even a single type I error.

Returning to example A, panel A shows that a false discovery event has
occurred under FWER since N0|r =50≥1 and the realized FDP is high,
50/100=50%. This suggests that the probability of false discoveries (FWER)
and the expected proportion of false discoveries (FDR) may both be high.14

The remedy, as suggested by many FWER and FDR adjustment procedures,
is to lower p-value thresholds for these hypotheses (p-value, as defined in our
context, is the single test probability of having a t-statistic that is at least as
large as the observed one under the null hypothesis). In terms of panel A, this
would turn some of the fifty false discoveries insignificant and push them into
the “Unpublished” category. Hopefully, the fifty true discoveries would survive
this change in p-value threshold and remain significant, which is only possible
if their p-values are relatively small.

On the other hand, type II errors—the mistake of missing true factors—are
also important in multiple hypothesis testing. Similar to type I errors, both the
total number of missed discoveries N1|a and the fraction of missed discoveries
among all abandoned tests N1|a/(M−R) are frequently used to measure the
severity of type II errors.15 Ideally, one would like to simultaneously minimize
the chance of committing a type I error and that of committing a type II error.
In our context, we would like to include as few insignificant factors (i.e., as
low a type I error rate) as possible and simultaneously as many significant
ones (i.e., as low a type II error rate) as possible. Unfortunately, this is not

13 There is a natural ordering between FDR and FWER. Theoretically, FDR is always bounded above by FWER,
that is, FDR≤FWER. To see this, by definition,

FDR=E[
N0|r
R

|R>0]Pr(R>0)

≤E[I(N0|r≥1)|R>0]Pr(R>0)

=Pr((N0|r ≥1)∩(R>0))

≤Pr(N0|r ≥1)=FWER,

where I(N0|r≥1) is an indicator function of event N0|r ≥1. This implies that procedures that control FWER under

a certain significance level automatically control FDR under the same significance level. In our context, a factor
discovery criterion that controls FWER at α also controls FDR at α.

14 Panel A only shows one realization of the testing outcome for a certain testing procedure (e.g., single tests). To
evaluate FWER and FDR, both of which are expectations and hence depend on the underlying joint distribution
of the testing statistics, we need to know the population of the testing outcomes. To give an example that is
compatible with panel A, we assume that the t-statistics for the 700 hypotheses are independent. Moreover, we
assume the t-statistic for a false factor follows a normal distribution with mean of zero and variance of 1.0, that
is, N (0,1); for a true factor, we assume its t-statistic follows a normal distribution with mean of 2.0 and variance
of 1.0, that is, N (2,1). Under these assumptions about the joint distribution of the test statistics, we find via
simulations that FWER is 100% and FDR is 26%, both exceeding 5%.

15 See Simes (1986) for one example of type II error in simulation studies and Farcomeni (2007) for another example
in medical experiments.

15

D
ow

nloaded from
 https://academ

ic.oup.com
/rfs/article/29/1/5/1843824 by guest on 20 February 2022



The Review of Financial Studies / v 29 n 1 2016

feasible: as in single hypothesis testing, a decrease in the type I error rate often
leads to an increase in the type II error rate and vice versa. We therefore seek
a balance between the two types of errors. A standard approach is to specify a
significance level α for the type I error rate and derive testing procedures that
aim to minimize the type II error rate, that is, maximize power, among the class
of tests with type I error rate at most α.

When comparing two testing procedures that can both achieve a significance
level α, it seems reasonable to use their type II error rates. However, when
we have multiple tests, the exact type II error rate typically depends on a set
of unknown parameters and is therefore difficult to assess.16 To overcome this
difficulty, researchers frequently use the distance of the actual type I error rate to
some prespecified significance level as the measure for a procedure’s efficiency.
Intuitively, if a procedure’s actual type I error rate is strictly below α, we can
probably push this error rate closer to α by making the testing procedure less
stringent, that is, a higher p-value threshold so there will be more discoveries. In
doing so, the type II error rate is presumably lowered given the inverse relation
between the two types of error rates. Therefore, once a procedure’s actual type
I error rate falls below a prespecified significance level, we want it to be as
close as possible to that significance level in order to achieve the smallest type
II error rate. Ideally, we would like a procedure’s actual type I error rate to be
exactly the same as the given significance level.17

Both FWER and FDR are important concepts that are widely applied in
many scientific fields. However, based on specific applications, one may be
preferred over the other. When the number of tests is very large (e.g., a million),
FWER controlling procedures tend to become very tough as they control for the
occurrence of even a single false discovery among one million tests.As a result,
they often lead to a very limited number of discoveries, if any. Conversely,
FWER control is more desirable when the number of tests is relatively small,
in which case more discoveries can be achieved and at the same time trusted.
In the context of our paper, we are sure that many tests have been tried in the
finance literature. Although there are around 300 published ones, hundreds or
even thousands of factors could have been constructed and tested. However, it
is not clear whether this number should be considered “large” compared to the

16 In single hypothesis testing, the type II error is a function of the unknown true parameter value—in our context,
the population factor mean return—under the alternative hypothesis. By tracing out all possible values under
the alternative hypothesis, we obtain the type II error function. The situation is more complicated in multiple
hypothesis testing because the type II error depends on multiple parameters that correspond to the collection of
alternative hypotheses for all the tests. Hence, the type II error function is multivariate when there are multiple
tests. See Zehetmayer and Posch (2010) for power estimation in large-scale multiple testing problems.

17 In our framework, individual p-values are sufficient statistics for us to make adjustment for multiple tests. Each
individual p-value represents the probability of having a t-statistic that is at least as large as the observed one
under the null hypothesis. What happens under the alternative hypotheses (i.e., type II error rate) does not directly
come into play because hypothesis testing in the frequentist framework has a primary focus on the type I error
rate. When we deviate from the frequentist framework and consider Bayesian methods, the type II error rate
becomes more important because Bayesian odds ratios put the type I and type II error rates on the same footing.
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Table 3
A summary of p-value adjustments

Adjustment type Single/Sequential Multiple test

Bonferroni single family-wise error rate
Holm sequential family-wise error rate
Benjamini, Hochberg, and Yekutieli (BHY) sequential false discovery rate

number of tests conducted in, say, medical research.18 This creates difficulty
in choosing between FWER and FDR. Given this difficulty, we do not take a
stand on the relative appropriateness of these two measures but instead provide
adjusted p-values for both. Researchers can compare their p-values with these
benchmarks to see whether FDR or even FWER is satisfied.

3.4 p-value adjustment: Three approaches
The statistics literature has developed many methods to control both FWER
and FDR.19 We choose to present the three most well-known adjustments:
Bonferroni, Holm, and Benjamini, Hochberg, and Yekutieli (BHY). Both
Bonferroni and Holm control FWER, and BHY controls FDR. Depending on
how the adjustment is implemented, they can be categorized into two general
types of corrections: a “single-step” correction equally adjusts each p-value,
and a “sequential” correction is an adaptive procedure that depends on the entire
distribution of p-values. Bonferroni is a single-step procedure, whereas Holm
and BHY are sequential procedures. Table 3 summarizes the two properties of
the three methods.

Suppose there are in total M tests and we choose to set FWER at αw and
FDR at αd . In particular, we consider an example with the total number of tests
M =10 to illustrate how different adjustment procedures work. For our main
results, we set both αw and αd at 5%. Table 4, panel A, lists the t-statistics and
the corresponding p-values for ten hypothetical tests. The numbers in the table
are broadly consistent with the magnitude of t-statistics that researchers report
for factor significance. Note that all ten factors will be “discovered” if we test
one hypothesis at a time. Multiple testing adjustments will usually generate
different results.20

3.4.1 Bonferroni’s adjustment. Bonferroni’s adjustment is as follows:

• Reject any hypothesis with p-value ≤ αw

M
:

p
Bonferroni
i =min[M×pi,1].

18 For instance, tens of thousands of tests are performed in the analysis of DNA microarrays. See Farcomeni (2007)
for more applications of multiple testing in medical research.

19 Methods that control FWER include Holm (1979), Hochberg (1988), and Hommel (1988). Methods that control
FDR include those of Benjamini and Hochberg (1995), Benjamini and Liu (1999), and Benjamini and Yekutieli
(2001).

20 Readers who are already familiar with the three multiple testing adjustment procedures can skip to Section 4.5
for our main results.
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Table 4
An example of multiple testing

Panel A: Single tests and “significant” factors

Test → 1 2 3 4 5 6 7 8 9 10 # of
discoveries

t-statistic 1.99 2.63 2.21 3.43 2.17 2.64 4.56 5.34 2.75 2.49 10
p-value (%) 4.66 0.85 2.71 0.05 3.00 0.84 0.00 0.00 0.60 1.28

Panel B: Bonferroni “significant” factors

Test → 1 2 3 4 5 6 7 8 9 10

t-statistic 1.99 2.63 2.21 3.43 2.17 2.64 4.56 5.34 2.75 2.49 3
p-value (%) 4.66 0.85 2.71 0.05 3.00 0.84 0.00 0.00 0.60 1.28

Panel C: Holm adjusted p-values and “significant” factors

Reordered tests b (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Old order 8 7 4 9 6 2 10 3 5 1 4
p-value (%) 0.00 0.00 0.05 0.60 0.84 0.85 1.28 2.71 3.00 4.66
αw/(M +1−b)

0.50 0.56 0.63 0.71 0.83 1.00 1.25 1.67 2.50 5.00
αw =5%

Panel D: BHY adjusted p-values and “significant” factors

Reordered tests b (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Old order 8 7 4 9 6 2 10 3 5 1 6
p-value (%) 0.00 0.00 0.05 0.60 0.84 0.85 1.28 2.71 3.00 4.66
(b ·αd )/(M×c(M))

0.17 0.34 0.51 0.68 0.85 1.02 1.19 1.37 1.54 1.71
αd =5%

The table displays ten t-statistics and their associated p-values for a hypothetical example. Panels A and B
highlight the significant factors under single tests and Bonferroni’s procedure, respectively. Panels C and D
explain Holm’s and BHY’s adjustment procedure, respectively. The bold numbers in each panel are associated
with significant factors under the specific adjustment procedure of that panel. M represents the total number of
tests (M = 10) and c(M)=

∑M
j=1 1/j . b is the order of p-values from lowest to highest. αw is the significance level

for Bonferroni’s and Holm’s procedure, and αd is the significance level for BHY’s procedure. Both numbers are
set at 5%. The cutoff p-value for Bonferroni is 0.5%, for Holm is 0.60%, and for BHY is 0.85%.

Bonferroni applies the same adjustment to each test. It inflates the original
p-value by the number of tests M; the adjusted p-value is compared with the
threshold value αw.

Example 4.4.1 To apply Bonferroni’s adjustment to the example in Table 4,
we simply multiply all the p-values by ten and compare the new p-values
with αw =5%. Equivalently, we can look at the original p-values and consider
the cutoff of 0.5%(=αw/10). This leaves the t-statistic of tests 4, 7, and 8 as
significant, which are highlighted in panel B.

Using the notation in panel B of Table 2 and assuming M0 of the M null
hypotheses are true, Bonferroni operates as a single-step procedure that can be
shown to restrict FWER at levels less than or equal to (M0 ×αw)/M , without
any assumption on the dependence structure of the p-values. Since M0 ≤M ,
Bonferroni also controls FWER at level αw.21

21 The number of true nulls M0 is unknown, so we usually cannot make Bonferroni more powerful by increasing
αw to α̂ =Mαw/M0 (note that M0α̂/M =αw). However some papers, including those by Schweder and Spjotvoll

18

D
ow

nloaded from
 https://academ

ic.oup.com
/rfs/article/29/1/5/1843824 by guest on 20 February 2022



… and the Cross-Section of Expected Returns

3.4.2 Holm’s adjustment. Sequential methods have been proposed to adjust
p-values in multiple hypothesis testing.22 They are motivated by a seminal
paper by Schweder and Spjotvoll (1982), who suggest a graphical presentation
of the multiple testing p-values. In particular, using Np to denote the number of
tests that have a p-value exceeding p, Schweder and Spjotvoll (1982) suggest
plotting Np against (1−p). When p is not very small (e.g., p>0.2), it is very
likely that the associated test is from the null hypothesis. In this case, the p-
value for a null test can be shown to be uniformly distributed between 0 and
1. It then follows that for a large p and under independence among tests, the
expected number of tests with a p-value exceeding p equals T0(1−p), where
T0 is the number of null hypotheses, i.e., E(Np)=T0(1−p). By plotting Np

against (1−p), the graph should be approximately linear with slope T0 for large
p-values. Points on the graph that substantially deviate from this linear pattern
should correspond to non-null hypotheses, i.e., discoveries. The gist of this
argument—large and small p-values should be treated differently—has been
distilled into many variations of sequential adjustment methods, among which
we will introduce Holm’s method that controls FWER and BHY’s method that
controls FDR.

Holm’s adjustment is as follows:

• Order the original p-values such that p(1) ≤p(2) ≤···p(b) ≤···≤p(M), and
let the associated null hypotheses be H(1),H(2),···H(b) ··· ,H(M).

• Let k be the minimum index such that p(b) >
αw

M+1−b
.

• Reject the null hypotheses H(1) ···H(k−1) (i.e., declare these factors
significant), but not H(k) ···H(M).

The equivalent adjusted p-value is therefore

pHolm
(i) =min[max

j≤i
{(M−j +1)p(j )},1].

Holm’s adjustment is a step-down procedure: for the ordered p-values, we start
from the smallest p-value and go down to the largest one.23 If k is the smallest
index that satisfies p(b) >

αw

M+1−b
, we will reject all tests whose ordered index is

below k.
To explore how Holm’s adjustment procedure works, suppose k is the

smallest index such that p(b) >
αw

M+1−b
. This means that for b<k, p(b) ≤ αw

M+1−b
.

In particular, for b=1, Bonferroni equals Holm, that is, αw

M
= αw

M+1−(b=1) ; for b=2,

(1982) and Hochberg and Benjamini (1990), try to improve the power of Bonferroni by estimating M0. We try to
achieve the same goal by using either Holm’s procedure, which also controls FWER, or procedures that control
FDR, an alternative definition of type I error rate.

22 Here, “sequential” refers to the fact that we adjust the ordered p-values sequentially. It does not mean that the
individual tests arrive sequentially.

23 Viewing small p-values as “up” and large p-values as “down,” Holm’s procedure is a “step-down” procedure
in that it goes from small p-values to large ones. This terminology is consistent with the statistics literature. Of
course, small p-values are associated with “large” values of the test statistics.
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αw

M
< αw

M+1−(b=2) , so Holm is less stringent than Bonferroni. Since less stringent
hurdles are applied to the second to the (k−1)th p-values, more discoveries are
generated under Holm’s than Bonferroni’s adjustment.

Example 4.4.2 To apply Holm’s adjustment to the example in Table 4, we
first order the p-values in ascending order and try to locate the smallest index
k that makes p(b) >

αw

M+1−b
. Table 4, panel C, shows the ordered p-values and

the associated αw

M+1−b
’s. Starting from the smallest p-value and going up, we

see that p(b) is below αw

M+1−b
until b=5, at which point p(5) is above αw

10+1−5 .
Therefore, the smallest b that satisfies p(b) >

αw

M+1−b
is 5 and we reject the null

hypothesis for the first four ordered tests (we discover four factors) and fail to
reject the null for the remaining six tests. The original labels for the rejected
tests are in the second row in panel C. Compared to Bonferroni, one more factor
(test 9) is discovered; that is, four factors rather than three are significant. In
general, Holm’s approach leads to more discoveries and all discoveries under
Bonferroni are also discoveries under Holm’s criteria.

Like Bonferroni, Holm also restricts FWER at αw without any requirement
on the dependence structure of p-values. It can also be shown that Holm
is uniformly more powerful than Bonferroni in that tests rejected (factors
discovered) under Bonferroni are always rejected under Holm, but not vice
versa. In other words, Holm leads to at least as many discoveries as Bonferroni.
Given the dominance of Holm over Bonferroni, one might opt to only use
Holm. We include Bonferroni because it is the most widely used adjustment
and a simple single-step procedure.

3.4.3 Benjamini, Hochberg, and Yekutieli’s adjustment. Benjamini,
Hochberg, and Yekutieli’s (BHY) adjustment is as follows:

• As with Holm’s procedure, we order the original p-values such that
p(1) ≤p(2) ≤···p(b) ≤···≤p(M) and let associated null hypotheses be
H(1),H(2),···H(b) ··· ,H(M).

• Let k be the maximum index such that p(b) ≤ b
M×c(M)αd .

• Reject null hypotheses H(1) ···H(k), but not H(k+1) ···H(M).

The equivalent adjusted p-value is defined sequentially as

pBHY
(i) =

⎧⎨
⎩

p(M) if i =M,

min[pBHY
(i+1) ,

M×c(M)
i

p(i)] if i ≤M−1,

where, c(M) is a function of the total number of tests M and controls for the
generality of the test. The larger c(M) is the more stringent test and hence
is more general in guarding against dependency among the test statistics. In
particular, Benjamini and Yekutieli (2001) show that setting c(M) at

c(M)=
M∑
j=1

1

j
(1)
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allows the procedure to work under arbitrary dependency among the test
statistics. We focus on this specification due to its generality but will discuss
what happens under alternative specifications of c(M).

In contrast to Holm’s, BHY’s method starts with the largest p-value and goes
to the smallest one. If k is the largest index that satisfies p(b) ≤ b

M×c(M)αd , we
will reject tests (discover factors) whose ordered index is below or equal to
k. Also, note that αd (significance level for FDR) is chosen to be the same
as αw (significance level for FWER). The significance level is subjective in
nature. Here, we choose the same significance level to make an apples-to-apples
comparison between FDR and FWER adjustment procedures. We discuss this
choice in more detail in Section 4.6.

To explore how BHY works, let k be the largest index, such that p(b) ≤
b

M×c(M)αd . This means that for b>k, p(b) >
b

M×c(M)αd . In particular, we have

p(k+1) >
(k+1)

M×c(M)αd , p(k+2) >
(k+2)

M×c(M)αd , …, p(M) >
M

M×c(M)αd . We see that the
(k+1)th to the last null hypotheses, not rejected, are compared to numbers
smaller than αd , the usual significance level in single hypothesis testing.
By being stricter than single hypothesis tests, BHY guarantees that the false
discovery rate, which depends on the joint distribution of all the test statistics, is
below the prespecified significance level. See Benjamini and Yekutieli (2001)
for details on the proof.

Example 4.4.3 To apply BHY’s adjustment to the example in Table 4, we first
order the p-values in ascending order and try to locate the largest index k that
satisfies p(b) ≤ b

M×c(M)αd . Table 4, panel D, shows the ordered p-values and

the associated b
M×c(M)αd ’s. Starting from the largest p-value and going down,

we see that p(b) is above b
M×c(M)αd until b=6, at which point p(6) is below

6
10×2.93αd . Therefore, the smallest b that satisfies p(b) ≤ b

M×c(M)αd is 6, and we
reject the null hypothesis for the first six ordered tests and fail to reject for the
remaining four tests. In the end, BHY leads to six significant factors (tests 8,
7, 4, 9, 6, and 2), three more than Bonferroni and two more than Holm.

In summary, for single tests, using the usual 5% cutoff, 10 out of 10 are
discovered. Allowing for multiple tests, the cutoffs are far smaller, with BHY
at 0.85%, Holm at 0.60%, and Bonferroni at 0.5%.

The choice of c(M) determines the generality of BHY’s procedure.
Intuitively, when c(M) is larger, then the more difficult it is to satisfy the
inequality p(b) ≤ b

M×c(M)αd , and hence there will be fewer discoveries. This
makes it easier to restrict the false discovery rate below a given significance
level since fewer discoveries are made. In the original work that develops
the concept of false discovery rate and related testing procedures, c(M)
is set equal to one. Under this choice, BHY is only valid when the test
statistics are independent or positively dependent. With our choice of c(M)
(i.e., c(M)=

∑M
j=1

1
j
), BHY is valid under any form of dependence among the
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Figure 1
Multiple test thresholds for example A,
The ten p-values for the example in Table 4 and the adjusted p-value lines for various adjustment procedures. All
ten factors are discovered using the standard criteria for single tests, three under Bonferroni, four under Holm,
and six under BHY. The significance level is set at 5% for each adjustment method.

p-values.24 Note with c(M)>1, this reduces the size of b
M×c(M)αd and it is

tougher to satisfy the inequality p(b) ≤ b
M×c(M)αd . That is, there will be fewer

factors found to be significant.
Figure 1 summarizes our example. It plots the original p-values (single

tests), as well as adjusted p-value lines, for various multiple testing adjustment
procedures. We see the stark difference in outcomes between multiple and
single hypothesis testing. While all ten factors would be discovered under
single hypothesis testing, only three to six factors would be discovered under
a multiple hypothesis test. Although single hypothesis testing guarantees the
type I error of each test meets a given significance level, meeting the more
stringent FWER or FDR bound will lead us to discard a number of factors.

3.5 Summary statistics
Figure 2 shows the history of discovered factors and publications.25 We observe
a dramatic increase in factor discoveries during the last decade. In the early

24 See Benjamini and Yekutieli (2001) for the proof.

25 To be clear, we only count those that have t-statistics or equivalent statistics reported. Roughly twenty new
factors fail to satisfy this requirement. For additional details, see factors in Table 6 marked with ‡.
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Figure 2
Factors and publications.

period from 1980 to 1991, only about one factor is discovered per year. This
number has grown to around five for the 1991–2003 period, during which
time a number of papers, such as Fama and French (1992), Carhart (1997),
and Pastor and Stambaugh (2003), spurred interest in studying cross-sectional
return patterns. In the last nine years, the annual factor discovery rate has
increased sharply to around 18. In total, 164 factors were discovered in the past
nine years, roughly doubling the 84 factors discovered in all previous years. We
do not include working papers in Figure 2. In our sample, there are 63 working
papers covering 68 factors.

We obtain t-statistics for each of the 316 factors discovered, including the
ones in the working papers.26 The overwhelming majority of t-statistics exceed
the 1.96 benchmark for 5% significance.27 The nonsignificant ones typically
belong to papers that propose a number of factors. These likely represent
only a small subsample of nonsignificant t-statistics for all tried factors.
Importantly, we take published t-statistics as given. That is, we assume they are
econometrically sound with respect to the usual suspects (data errors, coding
errors, misalignment, heteroscedasticity, autocorrelation, clustering, outliers,
etc.).

26 The sign of a t-statistic depends on the direction of the long/short strategy. We usually calculate p-values based
on two-sided t-tests, so the sign does not matter. From an investment perspective, the sign of the mean return of
a long/short strategy does not matter as we can always reverse the direction of the strategy. Therefore we use
absolute values of these t-statistics.

27 The multiple testing framework is robust to outliers. The procedures are based on either the total number of tests
(Bonferroni) or the order statistics of t-statistics (Holm and BHY).
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3.6 p-value adjustment when all tests are published (M =R)
We now apply the three adjustment methods previously introduced to the
observed factor tests, under the assumption that the test results of all tried
factors are available. We know that this assumption is false since our sample
underrepresents all insignificant factors by conventional significance standards:
we only observe those insignificant factors that are the results of purposeful
falsification experiments. We design methods to handle this missing data
issue later.

Despite some limitations, our results in this section are useful for at least
two reasons. First, the benchmark t-statistic based on our incomplete sample
provides a lower bound of the true t-statistic benchmark. In other words, if M

(total number of tests) > R (total number of discoveries), then we would expect
fewer factors than when M =R,28 so future t-statistics need to at least surpass
our benchmark to claim significance. Second, results in this section can be
rationalized within a Bayesian or hierarchical testing framework.29 Factors in
our list constitute an “elite” group: they have survived academia’s scrutiny for
publication. Placing a high prior on this group in a Bayesian testing framework
or viewing this group as a cluster in a hierarchical testing framework, one
can interpret results in this section as the first-step factor selection within an a
priori group.

Based on our sample of observed t-statistics of published factors,30 we obtain
three benchmark t-statistics. In particular, at each point in time, we transform
the set of available t-statistics into p-values. We then apply the three adjustment
methods to obtain benchmark p-values. Finally, these p-value benchmarks are
transformed back into t-statistics, assuming that standard normal distribution
approximates the t-distribution well. To guide future research, we extrapolate
our benchmark t-statistics into the future, assuming that the rate of “factor
production” remains the same as the recent history, that is, 2003–2012.

We choose to set αw at 5% (Holm, FWER) and αd at 1% (BHY, FDR)
for our main results. The significance level is subjective, as in individual
hypothesis testing, where conventional significance levels are usually adopted.
Since FWER is a special case of the type I error in individual testing and 5%
seems the default significance level in cross-sectional studies, we set αw at
5%. On the other hand, FDR is a more lenient control relative to FWER. If we
choose the same αd as αw, then by definition the BHY method will be more
lenient than both Holm and Bonferroni. We set FDR at 1% but will explain
what happens when αd is increased to 5%.

Figure 3 presents the three benchmark t-statistics. Both Bonferroni and Holm
adjusted benchmark t-statistics are monotonically increasing in the number
of discoveries. For Bonferroni, the benchmark t-statistic starts at 1.96 and
increases to 3.78 by 2012. It reaches 4.00 in 2032. The corresponding p-values

28 This is always true for Bonferroni’s adjustment but is not always true for the other two types of adjustments. The
Bonferroni adjusted t-statistic is monotonically increasing in the number of trials, so the t-statistic benchmark
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Figure 3
Adjusted t-statistics, 1965–2032.
Bonferroni and Holm are multiple testing adjustment procedures that control the family-wise error rate (FWER) and are described in Sections 4.4.1 and 4.4.2, respectively. BHY is a multiple
testing adjustment procedure that controls the false discovery rate (FDR) and is described in Section 4.4.3. The green solid curve shows the historical cumulative number of factors discovered,
excluding those from working papers. Forecasts (dotted green line) are based on a linear extrapolation. The dark crosses mark selected factors proposed by the literature. They are MRT
(market beta; Fama and MacBeth 1973), EP (earnings-price ratio; Basu 1983), SMB and HML (size and book-to-market; Fama and French (1992)), MOM (momentum; Carhart 1997), LIQ
(liquidity; Pastor and Stambaugh 2003), DEF (default likelihood; Vassalou and Xing 2004), IVOL (idiosyncratic volatility; Ang et al. 2006); DCG (durable consumption goods; Yogo 2006),
SRV and LRV (short-run and long-run volatility; Adrian and Rosenberg 2008), and CVOL (consumption volatility; Boguth and Kuehn 2012). t-statistics over 4.9 are truncated at 4.9. For
detailed descriptions of these factors, see Table 6 and http://faculty.fuqua.duke.edu/∼charvey/Factor-List.xlsx.
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(under single tests) for 3.78 and 4.00 are 0.02% and 0.01%, respectively, much
lower than the starting level of 5%. Holm implied t-statistics always fall below
Bonferroni t-statistics, consistent with the fact that Bonferroni always results
in fewer discoveries than Holm. However, Holm tracks Bonferroni closely
and their differences are small. BHY implied benchmarks, on the other hand,
are not monotonic. They fluctuate before year 2000 and stabilize at 3.39 (p-
value = 0.07%) after 2010. This stationarity feature of BHY implied t-statistics,
inherent in the definition of FDR, contrasts with that of Bonferroni and Holm.
Intuitively, at any fixed significance level α, the law of large numbers forces
the false discovery rate (FDR) to converge to a constant. If we change αd to
5%, the corresponding BHY implied benchmark t-statistic is 2.78 (p-value =
0.54%) in 2012 and 2.81 (p-value = 0.50%) in 2032, still much higher than
the starting value of 1.96. In sum, after taking testing multiplicity into account,
we believe the minimum threshold t-statistic for 5% significance is about 2.8,
which corresponds to a p-value (if a single test) of 0.5%.

To see how the new t-statistic benchmarks better reveal the statistical
significance of factors, in Figure 3 we mark the t-statistics of a few prominent
factors.Among these factors, HML, MOM, DCG, SRV, and MRT are significant
across all types of t-statistic adjustments, EP, LIQ, and CVOL are sometimes
significant, and the rest are never significant.

One concern with our results is that factors are discovered at different times
and tests are conducted using different methods. This heterogeneity in the time
of discovery and testing methods may blur the interpretation of our results.
Ideally, we want updated factor tests that are based on the most recent sample
and the same testing method.31 To alleviate this concern, we focus on the
group of factors that are published no earlier than 2000 and rely on Fama-
MacBeth tests. Additionally, we require that factor tests cover at least the
1970–1995 period and have as controls at least the Fama-French three factors
(Fama and French 1993). This leaves us with 124 factors. Based on this factor
group, the Bonferroni and Holm implied threshold t-statistics are 3.54 and
3.20 (5% significance), respectively, and the BHY implied thresholds are 3.23
(1% significance) and 2.67 (5% significance) by 2012. Not surprisingly, these
statistics are smaller than the corresponding thresholds based on the full sample.

will only rise if there are more factors. Holm and BHY depend on the exact t-statistic distribution, so more factors
do not necessarily imply a higher t-statistic benchmark.

29 See Wagenmakers and Grünwald (2006) and Storey (2003) on Bayesian interpretations of traditional hypothesis
testing. See Meinshausen (2008) for a hierarchical approach on variable selection.

30 See the Online Appendix B for details on our sampling procedure.

31 We want to stress that the three types of adjustments in our paper are robust to the heterogeneity in the time of
discovery and testing methods among individual studies. That is, despite the varying degrees of sample overlap
and the differences in the testing methods, our adjustment procedures guarantee that the type I errors (however
they are defined) are controlled under their prespecified levels. Therefore, from a technical point of view, neither
nonsimultaneity nor differences in testing methods invalidate our results.

26

D
ow

nloaded from
 https://academ

ic.oup.com
/rfs/article/29/1/5/1843824 by guest on 20 February 2022

http://rfs.oxfordjournals.org/lookup/suppl/doi:10.1093/rfs/hhv059/-/DC1


… and the Cross-Section of Expected Returns

However, the general message that we need a much higher t-statistic threshold
when multiple testing is taken into account is unchanged.

3.7 Robustness
3.7.1 Test statistics dependence. There is a caveat for all three methods
considered so far. In the context of multiple testing, any type of adjustment
procedure can become too stringent when there is a certain dependence structure
in the data. This is because these procedures are primarily designed to guard
against type I errors. Under a certain correlation structure, they may penalize
type I errors too harshly and lead to a high type II error rate.

In theory, under independence, Bonferroni and Holm approximately achieve
the prespecified significance level α when the number of tests is large. On the
other hand, both procedures tend to generate fewer discoveries than desired
when there is a certain degree of dependence among the tests. Intuitively, in
the extreme case in which all tests are the same (i.e., correlation = 1.0), we
do not need to adjust at all: FWER is the same as the type I error rate for
single tests. Hence, the usual single hypothesis test is sufficient. Similarly,
BHY may generate too few discoveries when tests are independent or positively
correlated.

Having discussed assumptions for the testing methods to work efficiently,
we now try to think of scenarios that can potentially violate these assumptions.
First, factors that proxy for the same type of risk may be dependent. Moreover,
returns of long-short portfolios designed to achieve exposure to a particular
type of factor may be correlated. For example, there are a number of factors
with price in the denominator that are naturally correlated. We also count four
different idiosyncratic volatility factors. If this type of positive dependence
exists among test statistics, all three methods would likely generate fewer
significant factors than desired. On the other hand, most often factors need to
“stand their ground” to be published. In the end, if you think we are overcounting
at 316, consider taking a haircut to 113 factors (the number of “common” factors
in Table 1). Figure 3 shows that our main conclusions do not materially change.
For example, the Holm at 113 factors is 3.29 (p-value = 0.10%), while Holm
at 316 factors is 3.64 (p-value = 0.03%).

Second, research studying the same factor but based on different samples
will generate highly dependent test statistics. Examples include the sequence
of papers studying the size effect. We try to minimize this concern by including,
with a few exceptions, only the original paper that proposes the factor. To the
extent that our list includes few such duplicate factors, our method greatly
reduces the dependence that would be introduced by including all papers
studying the same factor but for different sample periods.

Finally, when dependence among test statistics can be captured by Pearson
correlations among contemporaneous strategy returns, we present a new model
in Section 5 to systematically incorporate the information in test correlations.
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3.7.2 The case in which M >R. To deal with the hidden tests issue when
M >R, we propose in Appendix A a simulation framework to estimate
benchmark t-statistics. The idea is to first back out the underlying distribution
for the t-statistics of all tried factors, then to generate benchmark t-statistic
estimates, and apply the three adjustment procedures to simulated t-statistics
samples.32

Based on our estimates, 71% of all tried factors are missing. Using this
information, the new benchmark t-statistics for Bonferroni and Holm are
estimated to be 4.01 and 3.96, respectively, both slightly higher than when
M =R. This is as expected because more factors are tried under this framework.
The BHY implied t-statistic increases from 3.39 to 3.68 at 1% significance
and from 2.78 to 3.18 at 5% significance. In sum, across various scenarios,
we think the minimum threshold t-statistic is 3.18, corresponding to BHY’s
adjustment for M >R at 5% significance. Alternative cases all result in even
higher benchmark t-statistics.

One concern with BHY is that our specification of c(M) results in an overly
stringent threshold for FDR. We therefore try the more lenient choice (i.e.,
c(M)≡1) as in Benjamini and Hochberg (1995). Based on our estimate that
71% of tried factors are missing and by simulating the missing tests as in
Appendix A, we find that the BHY implied threshold equals 3.05 at 5%
significance and 3.17 at 1% significance. Indeed, these numbers are smaller
than the numbers under our default specification of c(M) (i.e., c(M)=

∑M
j=1

1
j
).

However, they are above 3.0 and therefore are consistent with our overall
message.

3.7.3A Bayesian hypothesis testing framework. We can also study multiple
hypothesis testing within a Bayesian framework. One major obstacle of
applying Bayesian methods in our context is the unobservability of all tried
factors. While we propose new frequentist methods to handle this missing data
problem, it is not clear how to structure the Bayesian framework in this context.
In addition, the high dimensionality of the problem raises concerns on both the
accuracy and the computational burden of Bayesian methods.

Nevertheless, ignoring the missing data issue, we outline a standard Bayesian
multiple hypothesis testing framework in Appendix B and explain how it
relates to our multiple testing framework. We discuss in detail the pros and
cons of the Bayesian approach. In contrast to the frequentist approach, which
uses generalized type I error rates to guide multiple testing, the Bayesian
approach relies on the posterior likelihood function and thus contains a natural
penalty term for multiplicity. However, this simplicity comes at the expense of
having a restrictive hierarchical model structure and independence assumptions

32 The underlying assumption for the model in Appendix A is the independence among t-statistics, which may not
be plausible given our previous discussions on test dependence. In that case, our structural model in Section 5
proposes a more realistic data generating process for the cross-section of test statistics.
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that may not be realistic for our factor testing problem. Although extensions
incorporating certain forms of dependence are possible, it is unclear what
precisely we should do for the 316 factors in our list. In addition, even for the
Bayesian approach, the final reject/accept decision still involves the threshold
choice. Due to these concerns, we choose not to implement the Bayesian
approach. We leave extensions of the basic Bayesian framework that could
possibly alleviate the above concerns to future research.

3.7.4 Methods controlling the FDP. Instead of FDR, recent research by
Lehmann and Romano (2005) develops methods to directly control the realized
FDP. In particular, they propose a step-down method to control for the
probability of FDP exceeding a threshold value. Since their definition of type I
error (i.e., P (FDP >γ ), where γ is the threshold FDP value) is different from
either FWER or FDR, results based on their methods are not comparable to
ours. However, the main conclusion is the same. For instance, when γ =0.10
and α =0.05, the benchmark t-statistic is 2.70 (p-value = 0.69%), which is
much higher than the conventional cutoff of 1.96. Details are presented in
Online Appendix C.

4. Correlation among Test Statistics

Although the BHY method is robust to arbitrary dependence among test
statistics, it does not use any information about the dependence structure. Such
information, when appropriately incorporated, can be helpful in making the
method more accurate (i.e., less stringent). We focus on the type of dependence
that can be captured by the Pearson correlation. To generate correlation among
test statistics, we focus on the correlation among factor returns. This correlation
is likely driven by macroeconomic and market-wide variables. Therefore, in
our context, the dependence among test statistics is equivalent to the correlation
among factor returns.

Multiple testing corrections in the presence of correlation have been only
considered in the recent statistics literature. Existing methods include bootstrap-
based permutation tests and direct statistical modeling. Permutation tests
resample the entire dataset and construct an empirical distribution for the pool
of test statistics.33 Through resampling, the correlation structure in the data
is taken into account and no model is needed. In contrast, direct statistical
modeling makes additional distributional assumptions on the data-generating
process. These assumptions are usually case dependent as different kinds of
correlations are more plausible under different circumstances.34

33 Westfall (1993) and Ge et al. (2003) are the early papers that suggest the permutation resampling approach
in multiple testing. Later development of the permutation approach tries to reduce computational burden by
proposing efficient alternative approaches. Examples include Lin (2005), Conneely and Boehnke (2007), and
Han, Kang, and Eskin (2009).

34 See Sun and Cai (2009) and Wei et al. (2009).
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In addition, recent research in finance explores bootstrap procedures to assess
the statistical significance of individual tests.35 Many of these studies focus
on performance evaluation and test whether fund managers exhibit skill. Our
approach focuses on the joint distribution of the test statistics (both FWER and
FDR depend on the cross-section of t-statistics) and evaluates the significance
of each individual factor.

Unfortunately, we do not always observe the time series of factor returns
(when a t-statistic is based on long-short strategy returns) or the time series
of slopes in cross-sectional regressions (when a t-statistic is based on the
slope coefficients in cross-sectional regressions). Because few researchers post
their original data, often all we have is the single t-statistic that summarizes
the significance of a factor. We propose a novel approach to overcome this
missing data problem. It is in essence a “direct modeling approach” but does not
require the full information of the return series based on which the t-statistic is
constructed. In addition, our approach is flexible enough to incorporate various
kinds of distributional assumptions. We expect it to be a valuable addition to the
multiple testing literature, especially when only test statistics are observable.

4.1 A model with correlations
For each factor, suppose researchers construct a corresponding long-short
trading strategy and normalize the return standard deviation to be σ =15% per
year, which is close to the annual volatility of the market index.36 In particular,
let the normalized strategy return in period t for the i-th discovered strategy be
Xi,t . Then the t-statistic for testing the significance of this strategy is:

Ti =(
N∑
t=1

Xi,t /N )/(σ/
√

N ).

Assuming joint normality and zero serial correlation for strategy returns, this
t-statistic has a normal distribution

Ti ∼N (μi/(σ/
√

N ),1),

where μi denotes the population mean of the strategy. The μi’s are
unobservable, and hypothesis testing under this framework amounts to testing
μi >0. We assume that each μi is an independent draw from the following
mixture distribution:

μi ∼p0I{μ=0} +(1−p0)Exp(λ),

where I{μ=0} is the distribution that has a point mass at zero, Exp(λ) is the
exponential distribution that has a mean parameter λ, and p0 is the probability of

35 See Efron (1979) for the original work in the statistics literature. For recent finance applications, see Karolyi
and Kho (2004), Kosowski et al. (2006), Kosowski, Naik, and Teo (2007), Fama and French (2010), Cao et al.
(2013), and Harvey and Liu (2014c).

36 Notice that this assumption is not necessary for our approach. Fixing the standard deviations of different strategies
eliminates the need to separately model them, which can be done through a joint modeling of the mean and
variance of the cross-section of returns. See Harvey and Liu (2014a) for further discussions on this.
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drawing from the point mass distribution. This mixture distribution assumption
is the core component for Bayesian multiple testing and succinctly captures
the idea of hypothesis testing in the traditional frequentist’s view: while there
is a range of possible values for the means of truly profitable strategies, a
proportion of strategies should have a mean that is indistinguishable from zero.
The exponential assumption is not essential for our model as more sophisticated
distributions (e.g., a Gamma distribution featuring two free parameters) can
be used. We use the exponential distribution for its simplicity37 and, perhaps
more importantly, because it is consistent with the intuition that more profitable
strategies are less likely to exist. An exponential distribution captures this
feature by having a monotonically decreasing probability density function.

Next, we incorporate correlations into the above framework. Among
the various sources of correlations, the cross-sectional correlations among
contemporaneous returns are the most important for us to take into account.
These correlations are likely induced by a response to common macroeconomic
or market shocks. Other kinds of correlations can be easily embedded into our
framework as well.38

As a starting point, we assume that the contemporaneous correlation between
two strategies’ returns is ρ. The noncontemporaneous correlations are assumed
to be zero. That is,

Corr(Xi,t ,Xj,t )=ρ, i 	=j,

Corr(Xi,t ,Xj,s)=0, t 	= s.

Finally, to incorporate the impact of hidden tests, we assume that M

factors are tried, but only factors that exceed a certain t-statistic threshold are
published. We set the threshold t-statistic at 1.96 and focus on the subsample
of factors that have a t-statistic larger than 1.96. However, as shown in
Appendix A, factors with marginal t-statistics (i.e., t-statistics just above 1.96)
are less likely to be published than those with larger t-statistics. Therefore,
our subsample of published t-statistics only covers a fraction of t-statistics
above 1.96 for tried factors. To overcome this missing data problem, we
assume that our sample covers a fraction r of t-statistics in between 1.96
and 2.57 and that all t-statistics above 2.57 are covered. We augment the
existing t-statistic sample to construct the full sample. For instance, when
r=1/2, we simply duplicate the sample of t-statistics in between 1.96 and
2.57 and maintain the sample of t-statistics above 2.57 to construct the full

37 As shown later, we need to estimate the parameters in the mixture model based on our t-statistics sample. An
overparameterized distribution for the continuous distribution in the mixture model, albeit flexible, may result
in imprecise estimates. We therefore use the simple one-parameter exponential distribution family.

38 To incorporate the serial correlation for individual strategies, we can model them as simple autoregressive
processes. See Harvey and Liu (2014a) for further discussion of the kinds of correlation structures that our model
is able to incorporate. See Sun and Cai (2009) for an example that models the spatial dependence among the null
hypotheses.
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sample. For the baseline case, we set r=1/2, consistent with the analysis
in Appendix A. We try alternative values of r to determine how the results
change.39

Given the correlation structure and the sampling distribution for the means
of returns, we can fully characterize the distributional properties of the cross-
section of returns. We can also determine the distribution for the cross-section
of t-statistics as they are functions of returns. Based on our sample of t-statistics
for published research, we match key sample statistics with their population
counterparts in the model.

The sample statistics we choose to match are the quantiles of the sample
of t-statistics and the sample size (i.e., the total number of discoveries).
Two concerns motivate us to use quantiles. First, sample quantiles are less
susceptible to outliers compared to means and other moment-related sample
statistics. Our t-statistic sample does have a few influential observations, and
we expect quantiles to be more useful descriptive statistics than the mean and
the standard deviation. Second, simulation studies show that quantiles in our
model are more sensitive to changes in parameters than other statistics. To offer
a more efficient estimation of the model, we choose to focus on quantiles.

In particular, the quantities we choose to match and their values for the
baseline sample (i.e., r =1/2) are given by:⎧⎪⎪⎨

⎪⎪⎩
T̂ =Total number of discoveries=353,

Q̂1 =The 20th percentile of the sample of t-statistics=2.39,

Q̂2 =The 50th percentile of the sample of t-statistics=3.16,

Q̂3 =The 90th percentile of the sample of t-statistics=6.34.

These three quantiles are representative of the spectrum of quantiles and can be
shown to be most sensitive to parameter changes in our model. Fixing the model
parameters, we can also obtain the model implied sample statistics T ,Q1,Q2,
and Q3 through simulations.40 The estimation works by seeking to find the set
of parameters that minimizes the following objective function:

D(λ,p0,M,ρ)=w0(T − T̂ )2 +
3∑

i=1

wi(Qi −Q̂i)
2,

where w0 and {wi}3
i=1 are the weights associated with the squared distances.

Motivated by the optimal weighting for the generalized method of moments
(GMM) estimators, we set these weights at w0 =1 and w1 =w2 =w3 =10,000.

39 Our choice of the threshold t-statistic is smaller than the 2.57 threshold in Appendix A. This allows us to observe
false discoveries that overcome the threshold more frequently than under 2.57. This is important for the estimation
of p0 in the model. For more details on the selection of the threshold t-statistic, see Harvey and Liu (2014a).

40 Model implied quantiles are difficult (and most likely infeasible) to calculate analytically. We obtain them through
simulations. In particular, for a fixed set of parameters, we simulate 5,000 independent samples of t-statistics.
For each sample, we calculate the four summary statistics. The median of these summary statistics across the
5,000 simulations is taken as the model implied statistics.
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They can be shown to have the same magnitude as the inverses of the variances
of the corresponding model implied sample statistics across a wide range of
parameter values and should help improve estimation efficiency.41

We estimate the three parameters (λ,p0, and M) in the model and choose
to calibrate the correlation coefficient ρ. In particular, for a given level of
correlation ρ, we numerically search for the model parameters (λ,p0,M) that
minimize the objective function D(λ,p0,M,ρ).

We choose to calibrate the amount of correlation because the correlation
coefficient is likely to be weakly identified in this framework. Ideally, to
have a better identification of ρ, we would like to have t-statistics that are
generated from samples that have varying degrees of overlap.42 We do not
allow heterogeneity in sample periods in either our estimation framework (i.e.,
all t-statistics are generated from samples that cover the same period) or our
data (we do not record the specific period for which the t-statistic is generated).
As a result, our results are best interpreted as the estimated t-statistic thresholds
for a hypothetical level of correlation.

To investigate how correlation affects multiple testing, we follow an intuitive
simulation procedure. In particular, fixing λ, p0, and M at their estimates, we
know the data-generating process for the cross-section of returns. Through
simulations, we are able to calculate the previously defined type I error rates
(i.e., FWER and FDR) for any given threshold t-statistic. We search for the
optimal threshold t-statistic that exactly achieves a prespecified error rate.

4.2 Results
Our estimation framework assumes a balanced panel with M factors and N

periods of returns. We need to assign a value to N . Published papers usually
cover a period ranging from twenty to fifty years. In our framework, the
choice of N does not affect the distribution of Ti under the null hypothesis
(i.e., μi =0) but will affect Ti under the alternative hypothesis (i.e., μi >0).
When μi is different from zero, Ti has a mean of μi/(σ/

√
N ). A larger N

reduces the noise in returns and makes it more likely for Ti to be significant.
To be conservative (i.e., less likely to generate significant t-statistics under the
alternative hypotheses), we setN at 240 (i.e., twenty years). Other specifications
of N change the estimate of λ but leave the other parameters almost intact. In
particular, the threshold t-statistics are little changed for alternative values of N .

The results are presented in Table 5. Across different correlation levels, λ

(the mean parameter for the exponential distribution that represents the mean

41 We do not pursue a likelihood-based estimation. Given that we have more than a thousand factors and each of
them is associated with an indicator variable that is missing, the likelihood function involves high-dimensional
integrals and is difficult to optimize. This leads us to a GMM-based approach.

42 Intuitively, t-statistics that are based on similar sample periods are more correlated than t-statistics that are
based on distinct sample periods. Therefore, the degree of overlap in sample period helps identify the correlation
coefficient. See Ferson and Chen (2013) for a similar argument on measuring the correlations among fund returns.
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Table 5
Estimation results: A model with correlations

Panel A: r = 1/2 (baseline)

t-statistic

ρ p0 λ(%) M FWER(5%) FWER(1%) FDR(5%) FDR(1%)

0 0.396 0.550 1,297 3.89 4.28 2.16 2.88
0.2 0.444 0.555 1,378 3.91 4.30 2.27 2.95
0.4 0.485 0.554 1,477 3.81 4.23 2.34 3.05
0.6 0.601 0.555 1,775 3.67 4.15 2.43 3.09
0.8 0.840 0.560 3,110 3.35 3.89 2.59 3.25

Panel B: r = 2/3 (more unobserved tests)

0 0.683 0.550 2,458 4.17 4.55 2.69 3.30
0.2 0.722 0.551 2,696 4.15 4.54 2.76 3.38
0.4 0.773 0.552 3,031 4.06 4.45 2.80 3.40
0.6 0.885 0.562 4,339 3.86 4.29 2.91 3.55
0.8 0.922 0.532 5,392 3.44 4.00 2.75 3.39

We estimate the model with correlations. r is the assumed proportion of missing factors with a t-statistic between
1.96 and 2.57. Panel A shows the results for the baseline case in which r=1/2, and panel B shows the results
for the case in which r=2/3. ρ is the correlation coefficient between two strategy returns in the same period.
p0 is the probability of having a strategy that has a mean of zero. λ is the mean parameter of the exponential
distribution for the monthly means of the true factors. M is the total number of trials.

returns for true factors) is consistently estimated at 0.55% per month. This
corresponds to an annual factor return of 6.6%. Therefore, we estimate the
average mean returns for truly significant factors to be 6.6% per annum. Given
that we standardize factor returns by an annual volatility of 15%, the average
annual Sharpe ratio for these factors is 0.44 (or monthly Sharpe ratio of 0.13).43

For the other parameter estimates, both p0 and M are increasing in ρ.
Focusing on the baseline case in panel A and at ρ =0, we estimate that
researchers have tried M =1,297 factors and 60.4% (=1−0.396) are true
discoveries. When ρ is increased to 0.60, we estimate that a total of M =1,775
factors have been tried and around 39.9% (=1−0.601) are true factors.

Turning to the estimates of threshold t-statistics and focusing on FWER,
we see that they are not monotonic in the level of correlation. Intuitively, two
forces are at work in driving these threshold t-statistics. On the one hand, both
p0 and M are increasing in the level of correlation. Therefore, more factors—
both in absolute value and in proportion—are drawn from the null hypothesis.
To control the occurrences of false discoveries based on these factors, we need
a higher threshold t-statistic. On the other hand, a higher correlation among
test statistics reduces the required threshold t-statistic. In the extreme case
when all test statistics are perfectly correlated, we do not need multiple testing
adjustment at all. These two forces work against each other and result in the
nonmonotonic pattern for the threshold t-statistics under FWER. For FDR,

43 Our estimates are robust to the sample percentiles that we choose to match. For instance, fixing the level of
correlation at 0.2, when we use the 10th together with the 50th and 90th percentiles of the sample of t-statistics,
our parameter estimate is (p0,λ,M)= (0.390,0.548,1,287). Alternatively, when we use the 80th together with the
20th and 50th percentiles of the sample of t-statistics, our parameter estimate is (p0,λ,M)= (0.514,0.579,1,493).
Both estimates are in the neighborhood of our baseline model estimates.
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it appears that the impact of larger p0 and M dominates so that the threshold
t-statistics are increasing in the level of correlation.

Across various correlation specifications, our estimates show that in general
a t-statistic of 3.9 and 3.0 is needed to control FWER at 5% and FDR at 1%,
respectively.44 Notice that these numbers are not far away from our previous
estimates of 3.78 (Holm adjustment that controls FWER at 5%) and 3.38 (BHY
adjustment that controls FDR at 1%). However, these similar numbers are
generated through different mechanisms. Our current estimate assumes a certain
level of correlation among returns and relies on an estimate of more than 1,300
for the total number of factor tests. On the other hand, our previous calculation
assumes that the 316 published factors are all the factors that have been tried
but does not specify a correlation structure.

4.3 How large is ρ?
Our sample has limitations in making a direct inference on the level of
correlation. To give some guidance, we provide indirect evidence on the
plausible levels of ρ.

First, the value of the optimized objective function sheds light on the level
of ρ. Intuitively, a value of ρ that is more consistent with the data-generating
process should result in a lower optimized objective function.Across the various
specifications of ρ in Table 5, we find that the optimized objective function
reaches its lowest point when ρ =0.2. Therefore, our t-statistic sample suggests
a low level of correlation. However, this evidence is only suggestive given the
weak identification of ρ in our model.

Second, we draw on external data source to provide inference. In
particular, we analyze the S&P CAPITAL IQ database, which includes detailed
information on the time-series of returns of over 400 factors for the U.S. equity
market. We estimate the average pairwise correlation among these factors to
be 0.15 for the 1985–2014 period.

Finally, existing studies in the literature provide guidance on the level of
correlation. McLean and Pontiff (2015) estimate the correlation among anomaly
returns to be around 0.05. Green, Hand, and Zhang (2013a) focus on accounting-
based factors and find the average correlation to be between 0.06 and 0.20.
Focusing on mutual fund returns, Barras, Scaillet, and Wermers (2010) argue for
a correlation of zero among fund returns (i.e., excess returns against benchmark
factors), while Ferson and Chen (2013) calibrate this number to be between 0.04
and 0.09.

Overall, we believe that the average correlation among factor returns is in
the neighborhood of 0.20.

44 To save space, we choose not to discuss the performance of our estimation method. Harvey and Liu (2014a)
provide a detailed simulation study of our model.
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4.4 How many true factors are there?
The number of true discoveries using our method seems high given that most
of us believe as a priori that there are only a handful of true systematic risk
factors. However, many of these factors that our method deems statistically
true have tiny Sharpe ratios. For example, around 70% of them have a Sharpe
ratio that is less than 0.5 per annum. From a modeling perspective, we impose
a monotonic exponential density for the mean returns of true factors. Hence, by
assumption, the number of discoveries will be decreasing in the mean return.

Overall, statistical evidence can only get us so far in reducing the number
of false discoveries. This is a limitation not only to our framework but also
probably in any statistical framework that relies on individual p-values. To see
this, suppose the smallest t-statistic among true risk factors is 3.0 and assume
our sample covers fifty risk factors that all have a t-statistic above 3.0. Then
based on statistical evidence only, it is impossible to rule out any of these fifty
factors from the list of true risk factors.

We agree that a further scrutiny of the factor universe is a valuable exercise.
There are at least two routes we can take. One route is to introduce additional
testable assumptions that a systematic risk factor has to satisfy to claim
significance. Pukthuanthong and Roll (2014) use the principle components
of the cross-section of realized returns to impose such assumptions. The other
route is to incrementally increase the factor list by allowing different factors to
crowd each other out. Harvey and Liu (2014c) provide such a framework. We
expect both lines of research to help in culling the number of factors.

5. Conclusion

At least 316 factors have been tested to explain the cross-section of expected
returns. Most of these factors have been proposed over the last ten years. Indeed,
Cochrane (2011) refers to this as “a zoo of new factors.” Our paper argues that
it is a serious mistake to use the usual statistical significance cutoffs (e.g., a
t-statistic exceeding 2.0) in asset pricing tests. Given the plethora of factors, and
the inevitable data mining, many of the historically discovered factors would
be deemed “significant” by chance.

There is an important philosophical issue embedded in our approach. Our
threshold cutoffs increase through time as more factors are data mined.
However, data mining is not new. Why should we have a higher threshold
for today’s data mining than for data mining in the 1980s? We believe there are
three reasons for tougher criteria today. First, the low-hanging fruit has already
been picked. That is, the rate of discovering a true factor has likely decreased.
Second, there is a limited amount of data. Indeed, there is only so much you
can do with the CRSP database. In contrast, in particle physics, it is routine
to create trillions of new observations in an experiment. We do not have that
luxury in finance. Third, the cost of data mining has dramatically decreased.
In the past, data collection and estimation were time intensive, so it was more
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likely that only factors with the highest priors—potentially based on economic
first principles—were tried.

Our paper presents three conventional multiple testing frameworks and
proposes a new one that particularly suits research in financial economics.
While these frameworks differ in their assumptions, they are consistent in their
conclusions. We argue that a newly discovered factor today should have a
t-statistic that exceeds 3.0. We provide a time-series of recommended “cutoffs”
from the first empirical test in 1967 through to present day. Many published
factors fail to exceed our recommended cutoffs.

While a t-statistic of 3.0 (which corresponds to a p-value of 0.27%) seems
like a very high hurdle, we also argue that there are good reasons to expect
that 3.0 is too low. First, we only count factors that are published in prominent
journals and we sample only a small fraction of the working papers. Second,
there are surely many factors that were tried by empiricists, failed, and never
made it to publication or even a working paper. Indeed, the culture in financial
economics is to focus on the discovery of new factors. In contrast with other
fields, such as medical science, it is rare to publish replication studies focusing
on only existing factors. Given that our count of 316 tested factors is surely too
low, this means the t-statistic cutoff is likely even higher.45

Should a t-statistic of 3.0 be used for every factor proposed in the future?
Probably not. A case can be made that a factor developed from first principles
should have a lower threshold t-statistic than a factor that is discovered as
a purely empirical exercise. Nevertheless, a t-statistic of 2.0 is no longer
appropriate—even for factors that are derived from theory.

In medical research, the recognition of the multiple testing problem has
led to the disturbing conclusion that “most claimed research findings are
false” (Ioannidis (2005)). Our analysis of factor discoveries leads to the same
conclusion – many of the factors discovered in the field of finance are likely false
discoveries: of the 296 published significant factors, 158 would be considered
false discoveries under Bonferonni, 142 under Holm, 132 under BHY (1%),
and 80 under BHY (5%). In addition, the idea that there are so many factors is
inconsistent with the principal component analysis, where, perhaps there are
five “statistical” common factors driving time-series variation in equity returns
(Ahn, Horenstein, and Wang 2012).

The assumption that researchers follow the rules of classical statistics
(e.g., randomization, unbiased reporting) is at odds with the notion of
individual incentives, ironically, one of the fundamental premises in economics.
Importantly, the optimal amount of data mining is not zero since some data
mining produces knowledge. The key, as argued by Glaeser (2008), is to design
appropriate statistical methods to adjust for biases, not to eliminate research

45 In astronomy and physics, even higher threshold t-statistics are often used to control for testing multiplicity. For
instance, the high profile discovery of Higgs Boson has a t-statistic of more than 5 (p-value less than 0.0001%).
See ATLAS Collaboration (2012), CMS Collaboration (2012), and Harvey and Liu (2014b).
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Table 6
Factor list: Factors sorted by year

Reference Factor # Reference Factor #

Sharpe (1964) market return T Constantinides (1982) individual consumer’s wealth T
Lintner (1965) market return T Basu (1983) EP ratio C8
Mossin (1966) market return T Adler and Dumas (1983) FX rate change T
Douglas (1967) total volatility C1 Arbel, Carvell, and Strebel (1983) institutional holding‡

Heckerman (1972) market return T Hawkins, Chamberlin, and Daniel (1984) earnings expectations‡

relative prices of cons. goods T McConnell and Sanger (1984) new listings announcement‡
1Black, Jensen, and Scholes (1972) market return Chan, Chen, and Hsieh (1985) market return†

Black (1972) market return T industrial production growth F5
Merton (1973) state variables investment opps. T change in expected inflation* F6
Fama and MacBeth (1973) market return F1 unanticipated inflation F7

beta squared* F2 credit premium F8
idiosyncratic volatility* C2 term structure* F9

Rubinstein (1973) high-order market return T De Bondt and Thaler (1985) long-term return reversal C9
Solnik (1974) world market return T Cox, Ingersoll, and Ross (1985) � investment opportunities T
Rubinstein (1974) individual investor resources T Amihud and Mendelson (1986) transaction costs T
Gupta and Ofer (1975) earnings growth expectations C3 Constantinides (1986) transaction costs T
Kraus and Litzenberger (1976) market return† Stulz (1986) expected inflation T

squared market return* F3 Sweeney and Warga (1986) long-term interest rate F10
Basu (1977) PE ratio C4 Chen, Roll, and Ross (1986) industrial production growth†

Lucas (1978) marginal rate of substitution T credit premium†

Litzenberger and Ramaswamy (1979) dividend yield C5 term structure†

market return† unanticipated inflation†

Breeden (1979) real consumption growth T change in oil prices* F11
Jarrow (1980) short-sale restrictions T Bhandari (1988) debt-to-equity ratio C10
2Fogler, John, and Tipton (1981) market return†‡ Bauman and Dowen (1988) long-term growth forecasts‡

Treasury bond return‡ Breeden, Gibbons, and Litzenberger (1989) consumption growth F12
corporate bond return‡ Amihud and Mendelson (1989) illiquidity C11

Oldfield and Rogalski (1981) Treasury-bill return F4 Ou and Penman (1989) predicted earnings change C12
Stulz (1981) world consumption T Jegadeesh (1990) return predictability C13
Mayshar (1981) transaction costs T
Banz (1981) firm size C6
Figlewski (1981) short interest C7

(continued)
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Table 6
Continued

Reference Factor # Reference Factor #

Ferson and Harvey (1991) market return† Elton, Gruber, and Blake (1995) change in expected inflation F22
consumption growth† change in expected GNP F23
credit spread† Spiess and Affleck-Graves (1999) seasoned equity offerings‡

� slope of the yield curve F13 Chan, Foresi, and Lang (1996) money growth F24
unexpected inflation† Cochrane (1996) returns on physical inv. F25
real short rate F14 Campbell (1996) market return†

3Fama and French (1992) size F15 labor income F26
value F16 dividend yield†

Chopra, Lakonishok, and Ritter (1992) return momentum‡ interest rate†

Holthausen and Larcker (1992) predicted return signs‡ term structure†

Jegadeesh and Titman (1993) return momentum C14 Jagannathan and Wang (1996) market return†

Elton et al. (1993) returns on S&P stocks‡ slope of yield curve†

returns on non-S&P stocks‡ labor income†

4Bansal and Viswanathan (1993) high-order equity & bond returns‡ La Porta (1996) earnings forecasts C18
Fama and French (1993) market return† Lev and Sougiannis (1996) R&D capital C19

size† Sloan (1996) accruals C20
value† Womack (1996) buy recommendations C21
term structure† sell recommendations C22
credit risk† Erb, Harvey, and Viskanta (1996) credit rating C23

5Ferson and Harvey (1993) world equity return‡ Brennan and Subrahmanyam (1996) illiquidity C24
change in weighted exchange rate‡ 6Chapman (1997) nonlinear fn. of cons. growth‡

� LT inflation expectations‡ 7Fung and Hsieh (1997) opportunistic style return‡

weighted real short-term rate‡ global/macro style return‡

change in oil price†‡ value style return‡

change in TED spread‡ trend following style return‡

� in G-7 industrial production‡ distressed inv. style return‡

unexpected G-7 inflation‡ Carhart (1997) size†

Ferson and Harvey (1994) world equity return F17 value†

change in weighted FX rate* F18 market return†

� LT inflation expectations* F19 momentum F27
change in oil price∗† Botosan (1997) disclosure level C25

Bossaerts and Dammon (1994) tax rate for capital gains F20 Ackert and Athanassakos (1997) earnings forecast uncertainty C26
tax rate for dividend F21 Daniel and Titman (1997) size†

Loughran and Ritter (1995) new public stock issuance C15 value†

Michaely, Thaler, and Womack (1995) dividend initiations C16
dividend omissions C17

(continued)
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Table 6
Continued

Reference Factor # Reference Factor #

Beneish (1997) earnings management likelihood‡ Griffin and Lemmon (2002) distress risk C45
Loughran and Vijh (1997) corporate acquisitions C27 Diether, Malloy, and Scherbina (2002) analyst dispersion C46
Brennan, Chordia, and Subrahmanyam (1998) size† Chen, Hong, and Stein (2002) breadth of ownership C47

book-to-market ratio† Easley, Hvidkjaer, and O’Hara (2002) information risk C48
momentum† Jones and Lamont (2002) short-sale constraints C49
trading volume C28 Penman and Zhang (2002) earnings sustainability C50

Abarbanell and Bushee (1998) fundamental analysis‡ Amihud (2002) market illiquidity F33
Frankel and Lee (1998) firm fundamental value‡ Vassalou (2003) GDP growth news F34
Dichev (1998) bankruptcy risk C29 Pastor and Stambaugh (2003) market liquidity F35
Datar, Naik, and Radcliffe (1998) illiquidity C30 Ali, Hwang, and Trombley (2003) idiosyncratic return volatility†

Ferson and Harvey (1999) expected portfolio return F28 transaction costs†

Moskowitz and Grinblatt (1999) industry momentum C31 investor sophistication†

Spiess and Affleck-Graves (1999) debt offerings‡ Gompers, Ishii, and Metrick (2003) shareholder rights C51
Heaton and Lucas (2000) entrepreneur income F29 Doyle, Lundholm, and Soliman (2003) excluded expenses C52
Harvey and Siddique (2000) coskewness F30 Fairfield, Whisenant, and Yohn (2003) growth in LT net operating assets C53
Lee and Swaminathan (2000) trading volume C32 Rajgopal, Shevlin, and Venkatachalam (2003) order backlog C54
Asness, Porter, and Stevens (2000) intra-industry size C33 Watkins (2003) return consistency C55

intra-industry value C34 Jacobs and Wang (2004) idiosyncratic consumption F36
intra-industry CF/P C35 Campbell and Vuolteenaho (2004) cash-flow news F37
intra-industry �% # employees C36 discount rate news F38
intra-industry momentum C37 8Vanden (2004) market return†

Piotroski (2000) financial statement infor. C38 index option returns F39
Lettau and Ludvigson (2001) consumption growth† Vassalou and Xing (2004) default risk F40

consumption-wealth ratio F31 Brennan, Wang, and Xia (2004) real interest rate F41
Chordia, Subrahmanyam, and Anshuman (2001) level of liquidity C39 maximum Sharpe ratio portfolio F42

variability of liquidity C40 Teo and Woo (2004) return reversals at the style level F43
Lamont, Polk, and Saa-Requejo (2001) financial constraints C41 Eberhart, Maxwell, and Siddique (2004) unexpected change in R&D C56
Fung and Hsieh (2001) straddle return‡ George and Hwang (2004) 52-week high C57
Barber et al. (2001) consensus recommendations∗ Jegadeesh et al. (2004) analysts’ recommendations C58
Dichev and Piotroski (2001) bond rating changes C42 Ofek, Richardson, and Whitelaw (2004) put-call parity C59
Elgers, Lo, and Pfeiffer (2001) analysts’ forecasts C43 Titman, Wei, and Xie (2004) abnormal capital investment C60
Gompers and Metrick (2001) institutional ownership C44 Hirshleifer et al. (2004) balance sheet optimism C61
Dittmar (2002) market return† Parker and Julliard (2005) LT consumption growth F44

squared market return† Bansal, Dittmar, and Lundblad (2005) long-run consumption F45
labor income growth†

squared labor income growth F32

(continued)
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Table 6
Continued

Reference Factor # Reference Factor #

Lustig and Van Nieuwerburgh (2005) housing price ratio F46 Brammer, Brooks, and Pavelin (2006) environment indicator* C78
Cremers and Nair (2005) external corporate governance C62 employment indicator* C79

internal corporate governance C63 community indicator* C80
9Acharya and Pedersen (2005) market return† Daniel and Titman (2006) intangible information C81

market liquidity* F47 Fama and French (2006) profitability C82
individual stock liquidity C64 investment* C83

Hou and Moskowitz (2005) price delay C65 book-to-market†

Anderson, Ghysels, and Juergens (2005) heterogeneous beliefs C66 Bradshaw, Richardson, and Sloan (2006) net financing C84
Nagel (2005) short-sale constraints C67 Cen, Wei, and Zhang (2006) forecasted earnings per share C85
Asquith, Pathak, and Ritter (2005) short-sale constraints C68 Franzoni and Marin (2006) pension plan funding C86
Gu (2005) patent citation C69 Gettleman and Marks (2006) acceleration C87
Jiang, Lee and Zhang (2005) information uncertainty C70 Narayanamoorthy (2006) unexpected earnings’ autocorr. C88
Lev, Nissim, and Thomas (2005) adjusted R&D C71 Boudoukh et al. (2007) payout yield F62
Lev, Sarath, and Sougiannis (2005) R&D reporting biases C72 Balvers and Huang (2007) productivity F63
Mohanram (2005) growth index C73 capital stock F64
10Vanden (2006) market return† Jagannathan and Wang (2007) 4th Q to 4th Q cons. growth F65

index option return† Avramov et al. (2007) credit rating C89
market × option return‡ Shu (2007) trader composition C90

Gomes, Yaron, and Zhang (2006) financing frictions F48 Baik and Ahn (2007) change in order backlog C91
Li, Vassalou, and Xing (2006) inv. growth (IG) households* F49 Brown and Rowe (2007) firm productivity C92

IG nonfinancial corporates F50 Doran, Fodor, and Peterson (2007) insider forecasts of firm vol. C93
IG noncorporate business F51 Head, Smith, and Wilson (2007) ticker symbol C94
IG financial firms F52 Gourio (2007) earnings cyclicality F66

11Chung, Johnson, and Schill (2006) 3rd-10th power market return‡ Kumar et al. (2008) market volatility innovation F67
Whited and Wu (2006) financial constraints C74 firm age C95
Ang et al. (2006) downside risk F53 market return†

Ang et al. (2006) systematic volatility F54 market vol. × firm age C96
idiosyncratic volatility C75 Adrian and Rosenberg (2008) short-run market volatility F68

Baker and Wurgler (2006) investor sentiment F55 long-run market volatility F69
Kumar and Lee (2006) retail investor sentiment F56 Xing (2008) investment growth F70
Yogo (2006) durable & nondur. cons. growth F57 Korniotis (2008) mean consumption growth F71
Lo and Wang (2006) market return† variance of consumption growth* F72

trading volume F58 mean habit growth F73
Sadka (2006) liquidity F59 variance of habit growth F74
Chordia and Shivakumar (2006) earnings F60 Korajczyk and Sadka (2008) liquidity F75
Liu (2006) liquidity F61 Guo and Savickas (2008) country-level idiosyncratic vol. C97
Anderson and Garcia-Feijóo (2006) capital investment C76 Campbell, Hilscher, and Szilagyi (2008) distress C98
Hou and Robinson (2006) industry concentration C77 Garlappi, Shu, and Yan (2008) shareholder advantage C99

implied market value from KMV C100

(continued)
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Table 6
Continued

Reference Factor # Reference Factor #

Cooper, Gulen, and Schill (2008) asset growth C101 Barber, Odean, and Zhu (2009) order imbalance C125
Pontiff and Woodgate (2008) share issuance C102 Cremers, Halling, and Weinbaum (2010) market volatility and jumps F85
Brandt et al. (2008) earnings announcement return‡ Hirshleifer and Jiang (2010) market mispricing F86
Cohen and Frazzini (2008) firm economic links C103 Boyer, Mitton, and Vorkink (2010) idiosyncratic skewness C126
Fabozzi, Ma, and Oliphant (2008) sin stock C104 Cooper, Gulen, and Ovtchinnikov (2010) political contributions C127
Gu and Lev (2011) goodwill impairment C105 Tuzel (2010) real estate holdings C128
Gu, Wang, and Ye (2008) information in order backlog C106 Amaya et al. (2011) realized skewness C129
Lehavy and Sloan (2008) investor recognition C107 realized kurtosis C130
Soliman (2008) DuPont analysis C108 An, Bhojraj, and Ng (2010) excess multiple C131
Hvidkjaer (2008) small trades C109 Armstrong, Banerjee, and Corona (2010) firm information quality C132
Brennan and Li (2008) idiosyncratic S&P 500 return F76 Cao and Xu (2010) long-run idiosyncratic vol. C133
Da (2009) cash flow cova. with cons. F77 Easley, Hvidkjaer, and O’Hara (2010) private information F87

cash flow duration F78 Hameed, Huang, and Mian (2010) intra-industry return reversals C134
Livdan, Sapriza, and Zhang (2009) financial constraints Menzly and Ozbas (2010) related industry returns C135
Malloy, Moskowitz, and Vissing-Jorgensen (2009) LT stockholder cons. growth F79 Papanastasopoulos, Thomakos, and Wang (2010) earnings to equity holders C136
Cremers, Nair, and John (2009) takeover likelihood F80 net cash to equity holders C137
Chordia, Huh, and Subrahmanyam (2009) illiquidity F81 Simutin (2010) excess cash C138
Da and Warachka (2009) cash flow F82 Huang et al. (2012) extreme downside risk C139
Ozoguz (2009) investors’ beliefs* F83 Xing, Zhang, and Zhao (2010) volatility smirk C140

investors’ uncertainty F84 George and Hwang (2010) exposure financial distress costs
Fang and Peress (2009) media coverage C110 Berkman, Jacobsen, and Lee (2011) rare disasters F88
Avramov et al. (2009) financial distress C111 12Kapadia (2011) distress risk‡

Fu (2009) idiosyncratic volatility C112 Hou, Karolyi, and Kho (2011) momentum†

Hahn and Lee (2009) debt capacity C113 cash flow-to-price F89
Bali and Hovakimian (2009) realized-implied vol. spread C114 Li (2011) R&D investment C141

call-put implied vol. spread C115 financial constraints†

Chandrashekar and Rao (2009) productivity of cash C116 Bali, Cakici, and Whitelaw (2011) extreme stock returns C142
Chemmanur and Yan (2009) advertising C117 Yan (2011) jumps individual stock returns C143
Da and Warachka (2009) analyst forecasts optimism C118 Edmans (2011) intangibles C144
Gokcen (2009) information revelation C119 13Chen, Novy-Marx, and Zhang (2011) market return†

Gow and Taylor (2009) earnings volatility C120 investment portfolio return F90
Huang (2009) cash-flow volatility C121 ROE portfolio return F91
Korniotis and Kumar (2009) local unemployment C122 Akbas, Armstrong, and Petkova (2011) volatility of liquidity C145

local housing collateral C123 Jiang and Sun (2011) dispersion in beliefs C146
Nguyen and Swanson (2009) efficiency score C124 Han and Zhou (2011) credit default swap spreads C147

(continued)
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Reference Factor # Reference Factor #

Eisfeldt and Papanikolaou (2011) organizational capital C148 Lioui and Maio (2012) future growth opp. cost of money F106
Balachandran and Mohanram (2011) residual income C149 Gârleanu, Kogan, and Panageas (2012) inter-cohort cons. differences T
Bandyopadhyay, Huang, and Wirjanto (2010) accrual volatility C150 Hu, Pan, and Wang (2012) market-wide liquidity F107
Callen and Lyle (2011) implied cost of capital C151 Conrad, Dittmar, and Ghysels (2013) stock skewness C166
Callen, Khan, and Lu (2013) nonaccounting infor. quality C152 Baltussen, Van Bekkum, and Van der Grient (2012) expected return uncertainty C167

accounting infor. quality C153 Zhao (2012) information intensity C168
Chen, Kacperczyk, and Ortiz-Molina (2011) labor unions C154 Friewald, Wagner, and Zechner (2012) credit risk premia C169
Da, Liu, and Schaumburg (2011) overreaction to nonfundamentals C155 Garcia and Norli (2012) geographic dispersion C170
Drake, Rees, and Swanson (2011) short interest C156 Kim, Pantzalis, and Park (2012) political geography C171
Hafzalla, Lundholm, and Van Winkle (2011) percent total accrual C157 Johnson and So (2012) option to stock volume ratio C172
Hess, Kreutzmann, and Pucker (2011) projected earnings accuracy‡ Palazzo (2012) cash holdings C173
Imrohoroglu and Tuzel (2011) firm productivity C158 Donangelo (2012) labor mobility C174
Landsman et al. (2011) really dirty surplus C159 Wang (2012) debt covenant protection C175
Li (2011) earnings forecast C160 Chen and Strebulaev (2012) stock cash-flow sensitivity C176
Nyberg and Pöyry (2011) asset growth C161 Li (2012) jump beta F108
Ortiz-Molina and Phillips (2011) real asset liquidity C162 15Ferson, Nallareddy, and Xie (2012) long-run cons. growth‡

Patatoukas (2011) customer-base concentration C163 short-run cons. growth‡

Thomas and Zhang (2011) tax expense surprises C164 cons. growth volatility‡

Wahlen and Wieland (2011) predicted earnings increase score‡ Ang, Bali, and Cakici (2012) change in call implied vol. C177
Garlappi and Yan (2011) shareholder recovery change in put implied vol. C178
Savov (2011) garbage growth F92 Bazdresch, Belo and Lin (2012) firm hiring rate C179
Adrian, Etula, and Muir (2012) financial intermediary’s wealth F93 Cohen and Lou (2012) infor. processing complexity C180
Campbell et al. (2012) stochastic volatility* F94 Cohen, Malloy, and Pomorski (2012) opportunistic buy C181
Chen and Petkova (2012) average variance of equity returns F95 opportunistic sell C182
Eiling (2013) income growth goods industries F96 Hirshleifer, Hsu, and Li (2012) innovative efficiency C183

income growth for manufacturing F97 Li (2012) abnormal operating cash flows C184
income growth for distributive F98 abnormal production costs C185
income growth for service* F99 Prakash and Sinha (2012) deferred revenues C186
income growth for government* F100 Price et al. (2012) earnings conference calls C187

Boguth and Kuehn (2012) consumption volatility F101 So (2012) earnings forecast optimism C188
Chang, Christoffersen, and Jacobs (2012) market skewness F102 Boons, De Roon, and Szymanowska (2012) commodity index F109
Viale, Garcia-Feijoo, and Giannetti (2012) learning* F103 Moskowitz, Ooi, and Pedersen (2012) time-series momentum C189

Knightian uncertainty F104 Koijen et al. (2012) carry C190
Bali and Zhou (2012) market uncertainty F105 Burlacu et al. (2012) expected return proxy C191
14Gómez, Priestley, and Zapatero (2012) labor income‡ Beneish, Lee, and Nichols (2012) fraud probability C192
Van Binsbergen (2012) product price change C165

(continued)
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Continued

Reference Factor # Reference Factor #

Brennan et al. (2012) buy orders C193 Frazzini and Pedersen (2013) betting-against-beta C198
sell orders C194 Valta (2013) secured debt C199

Doskov, Pekkala, and Ribeiro (2013) expected dividend level F110 convertible debt C200
expected dividend growth F111 convertible debt indicator C201

Cohen, Diether, and Malloy (2013) firm’s ability to innovate C195 Akbas et al. (2013) cross-sectional pricing inefficiency F112
Larcker, So, and Wang (2013) board centrality C196 Chordia, Subrahmanyam, and Tong (2013) attenuated returns C202
Novy-Marx (2013) gross profitability C197 Brennan, Huh, and Subrahmanyam (2013) bad private information C203

Han and Zhou (2013) trend signal F113

Notes to Table: T, theoretical; F, common factors; C, characteristics. An augmented version (which includes full citations, as well as hyperlinks to each of the cited articles) of this table is
available for download and resorting. See http://faculty.fuqua.duke.edu/c̃harvey/Factor-List.xlsx. Many of the working papers we cite have been published, but because our method depends
on the point in time, we cite only the working paper version.
This table contains a summary of risk factors that explain the cross-section of expected returns.
*, insignificant; †, duplicated; ‡, missing p-value.
1: Black, Jensen, and Scholes (1972) first tested the market factor. However, they focus on industry portfolios and thus present a less powerful test compared to Fama and MacBeth (1973).
We therefore use the test statistics in Fama and MacBeth (1973) for the market factor.
2: No p-values reported for their factors constructed from principal component analysis.
3: Fama and French (1992) create zero-investment portfolios to test size and book-to-market effects. This is different from the testing approach in Banz (1981). We therefore count Fama and
French’s (1992) test on size effect as a separate one.
4: No p-values reported for their high order equity index return factors.
5: No p-values reported for their eight risk factors that explain international equity returns.
6: No p-values reported for his return factors.
7: No p-values reported for their five hedge fund style return factors.
8: Vanden (2004) reports a t-statistic for each Fama-French 25 size and book-to-market sorted stock portfolios. We average these 25 t-statistics.
9: Acharya and Pedersen (2005) consider the illiquidity measure in Amihud (2002). This is different from the liquidity measure in Pastor and Stambaugh (2003). We therefore count their
factor as a separate one.
10: No p-values reported for the interactions between market return and option returns.
11: No p-values reported for their comoment betas.
12: No p-values reported for his distress tracking factor.
13: Gómez, Priestley, and Zapatero (2012) study census division level labor income. However, most of the division level labor income have a nonsignificant t-statistic. We do not count their
factors.
14: No p-values reported for their factors estimated from the long-run risk model.
15: The paper is replaced by Hou, Xue, and Zhang (2014).
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initiatives. The multiple testing framework detailed in our paper is true to this
advice.

Our research quantifies the warnings of both Fama (1991) and Schwert
(2003). We attempt to navigate the zoo and establish new benchmarks to guide
empirical asset pricing tests.

Appendix A Multiple Testing When the Number of Tests (M) Is Unknown

The empirical difficulty in applying standard p-value adjustments is that we do not observe factors
that have been tried, found to be insignificant and then discarded. We attempt to overcome this
difficulty using a simulation framework. The idea is first to simulate the empirical distribution of
p-values for all experiments (published and unpublished) and then to adjust the p-values based on
these simulated samples.

First, we assume the test statistic (t-statistic, for instance) for any experiment follows a certain
distribution D (e.g., exponential distribution) and the set of published works is a truncated D

distribution. Based on the estimation framework for truncated distributions,46 we estimate the
parameters of distribution D and the total number of trials M . Next, we simulate many sequences
of p-values, each corresponding to a plausible set of p-value realizations of all trials. To account for
the uncertainty in parameter estimates of D and M , we simulate the p-value sequences based on
the distribution of estimated D and M . Finally, for each p-value, we calculate the adjusted p-value
based on a sequence of simulated p-values. The median is taken as the final adjusted p-value.

A.1 Using Truncated Exponential Distribution to Model the t-statistic Sample
Truncated distributions have been used to study hidden tests (i.e., publication bias) in medical
research.47 The idea is that studies reporting significant results are more likely to get published.
Assuming a threshold significance level or t-statistic, researchers can, to some extent, infer the
results of unpublished works and gain an understanding of the overall effect of a drug or treatment.
However, in medical research, insignificant results are still viewed as an indispensable part of the
overall statistical evidence and are given much more prominence than in the financial economics
research.As a result, medical publications are more likely to report insignificant results. This makes
applying the truncated distribution framework to medical studies difficult as there is no clear-cut
threshold value.48 In this sense, the truncated distributional framework suits our study better—1.96
is the obvious hurdle that research needs to overcome to be published.

On the other hand, not all tried factors with a t-statistic above 1.96 are reported. In the
quantitative asset management industry, significant results are not published—they are considered
“trade secrets.” For the academic literature, factors with “borderline” t-statistics are difficult to
get published. Thus, our sample is likely missing a number of factors that have t-statistics just
over 1.96. To make our inference robust, for our baseline result, we assume all tried factors with
t-statistics above 2.57 are observed and ignore those with t-statistics in the range of (1.96, 2.57).
We experiment with alternative ways to handle t-statistics in this range.

Many distributions can be used to model the t-statistic sample. One restriction that we think
any of these distributions should satisfy is the monotonicity of the density curve. Intuitively, it
should be easier to find factors with small t-statistics than with large ones.49 We choose to use the
simplest distribution that incorporates this monotonicity condition: the exponential distribution.

46 See Heckman (1979) and Greene (2008), Chapter 24).

47 See Begg and Berlin (1988) and Thornton and Lee (2000).

48 When the threshold value is unknown, it must be estimated from the likelihood function. However, such estimation
usually incurs large estimation errors.

49 This basic scarcity assumption is also the key ingredient in our model in Section 5.
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Figure A.1
Density plots for t-statistic
Empirical density and fitted exponential density curves based on three different samples. Panel A is based on
the baseline sample that includes all t-statistics above 2.57. Panel B is based on the original sample with all
t-statistics above 1.96. Panel C is based on the augmented sample that adds the subsample of observations that
fall in between 1.96 and 2.57 to the original t-statistic sample. It doubles the number of observations within the
range of 1.96 and 2.57 in the original sample. λ is the single parameter for the exponential curve. It gives the
population mean for the unrestricted (i.e., nontruncated) distribution.

Panel A of Figure A.1 presents the histogram of the baseline t-statistic sample and the fitted
truncated exponential curve.50 The fitted density closely tracks the histogram and has a population
mean of 2.07.51 Panel B is a histogram of the original t-statistic sample, which, as we discussed
before, is likely to underrepresent the sample with a t-statistic in the range of (1.96, 2.57). Panel C
is the augmented t-statistic sample with the ad hoc assumption that our sample covers only half of
all factors with t-statistics between 1.96 and 2.57. The population mean estimate is 2.22 in panel

50 There are a few very large t-statistics in our sample. We fit the truncated exponential model without dropping any
large t-statistics. In contrast to the usual normal density, exponential distribution is better at modeling extreme
observations. In addition, extreme values are pivotal statistics for heavy-tailed distributions and are key for model
estimation. While extreme observations are included for model estimation, we exclude them in Figure A.1 to
better focus on the main part of the t-statistic range.

51 Our truncated exponential distribution framework allows a simple analytical estimate for the population mean
of the exponential distribution. In particular, let c be the truncation point and the t-statistic sample be {ti }Ni=1.

The mean estimate is given by λ̂=1/(t̄ −c), where t̄ =(
∑N

i=1 ti )/N is the sample mean.
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B and 1.93 in panel C. As expected, the underrepresentation of relatively small t-statistics results
in a higher mean estimate for the t-statistic population. We think the baseline model is the best
among all three models as it not only overcomes the missing data problem for the original sample,
but also avoids guessing the fraction of missing observations in the 1.96–2.57 range. We use those
model estimates for the follow-up analysis.

Using the baseline model, we calculate other interesting population characteristics that are key
to multiple hypothesis testing. Assuming independence, we model observed t-statistics as draws
from an exponential distribution with mean parameter λ̂ and a known cutoff point of 2.57. The
proportion of unobserved factors is then estimated as

P (unobserved)=�(2.57;λ̂)=1−exp(−2.57/λ̂)=71.1%, (A.1)

where �(c;λ) is the cumulative distribution function evaluated at c for a exponential distribution
with mean λ. Our estimates indicate that the mean absolute value of the t-statistic for the underlying
factor population is 2.07 and about 71.1% of tried factors are discarded. Given that 238 out of the
original 316 factors have a t-statistic exceeding 2.57, the total number of factor tests is estimated
to be 824 (=238/(1−71.1%)) and the number of factors with a t-statistic between 1.96 and 2.57
is estimated to be 82.52 Since our t-statistic sample covers only 57 such factors, roughly 30%
(=(82-57)/82) of t-statistics between 1.96 and 2.57 are hidden.

A.2 Simulated Benchmark t-statistics under Independence
The truncated exponential distribution framework helps us approximate the distribution of
t-statistics for all factors, both published and unpublished. We can then apply the aforementioned
adjustment techniques to this distribution to generate new t-statistic benchmarks. However, there
are two sources of sampling and estimation uncertainty that affect our results. First, our t-statistic
sample may underrepresent all factors with t-statistics exceeding 2.57.53 Hence, our estimates of the
total trials are biased (too low), which affects our calculation of the benchmarks. Second, estimation
errors in the truncated exponential distribution can affect our benchmark t-statistics. Although we
can approximate the estimation error through the usual asymptotic distribution theory for MLE, it
is unclear how this error affects our benchmark t-statistics. This is because t-statistic adjustment
procedures usually depend on the entire t-statistic distribution and so standard transformational
techniques (e.g., the delta method) do not apply. Moreover, we are not sure whether our sample is
large enough to trust the accuracy of asymptotic approximations.

Given these concerns, we propose a four-step simulation framework that incorporates these
uncertainties.

Step I Estimate λ and M based on a new t-statistic sample with size r×R.

Suppose our current t-statistic sample size is R and it only covers a fraction of 1/r of
all factors. We sample r×R t-statistics (with replacement) from the original t-statistic
sample. Based on this new t-statistic sample, we apply the above truncated exponential
distribution framework to the t-statistics and obtain the parameter estimates λ for the
exponential distribution. The truncation probability is calculated as P̂ =�(2.57;λ̂). We can
then estimate the total number of trials by

M̂ =
rR

1−P̂
.

52 Directly applying our estimate framework to the original sample that includes all t-statistics above 1.96, the
estimated total number of factor tests would be 713. Alternatively, assuming our sample only covers half of the
factors with t-statistics between 1.96 and 2.57, the estimated number of factors is 971.

53 This will happen if we miss factors published by the academic literature or we do not have access to the “trade
secrets” by industry practitioners.
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Table A.1
Benchmark t-statistics when M is estimated

Sampling ratio M Bonferroni Holm BHY(1%) BHY(5%)

(r) [10% 90%] [10% 90%] [10% 90%] [10% 90%] [10% 90%]

1 817 4.01 3.96 3.68 3.17
[731 947 ] [3.98 4.04 ] [3.92 4.00] [3.63 3.74 ] [3.12 3.24]

1.5 1,234 4.11 4.06 3.70 3.20
[1,128 1,358 ] [4.08 4.13 ] [4.03 4.09] [3.66 3.74 ] [3.16 3.24]

2 1,646 4.17 4.13 3.71 3.21
[1,531 1,786 ] [4.15 4.19 ] [4.11 4.15] [3.67 3.75 ] [3.18 3.25]

The estimated total number of factors tried (M) and the benchmark t-statistic percentiles based on a truncated
exponential distribution framework. Our estimation is based on the original t-statistic sample truncated at 2.57.
The sampling ratio is the assumed ratio of the true population size of t-statistics exceeding 2.57 over our current
sample size. Both Bonferroni and Holm have a significance level of 5%.

Step II Calculate the benchmark t-statistic based on a random sample generated from λ̂

and M̂ .

Based on the previous step estimate of λ̂ and M̂ , we generate a random sample of t-statistics
for all tried factors. We then calculate the appropriate benchmark t-statistic based on this
generated sample.

Step III Repeat Step II 10,000 times to obtain the median benchmark t-statistic.

We take the median as the final benchmark t-statistic corresponding to the parameter
estimate (λ̂,M̂).

Step IV Repeat Steps I-III 10,000 times to generate a distribution of benchmark t-statistics.

Repeat Steps I-III 10,000 times, each time with a newly generated t-statistic sample as
in Step I. For each repetition, we obtain a benchmark t-statistic ti corresponding to the
parameter estimates (λ̂i ,M̂i ). In the end, we have a collection of benchmark t-statistics
{ti}10000

i=1 .

To see how our procedure works, notice that Steps II and III calculate the theoretical benchmark
t-statistic for a t-statistic distribution characterized by (λ̂,M̂). As a result, the outcome is simply
one number and there is no uncertainty around it. Uncertainties are incorporated in Steps I and IV.
In particular, by repeatedly sampling from the original t-statistic sample and re-estimating λ and
M each time, we take into account the estimation error of the truncated exponential distribution.
Also, under the assumption that neglected significant t-statistics follow the empirical distribution
of our t-statistic sample, by varying r , we can assess how this underrepresentation of our t-statistic
sample affects results.

Table A.1 shows estimates of M and benchmark t-statistics. When r =1, the median estimate
for the total number of trials is 817,54 almost the same as our previous estimate of 820 based on
the original sample. Unsurprisingly, the Bonferroni implied benchmark t-statistic (4.01) is larger
than 3.78, which is what we obtain when ignoring unpublished works. The Holm implied t-statistic
(3.96), while not necessarily increasing in the number of trials, is also higher than before (3.64).
The BHY implied t-statistic increases from 3.39 to 3.68 at 1% significance and from 2.78 to 3.18
at 5% significance. As r increases, the sample size M and the benchmark t-statistics for all four

54 Our previous estimate of 820 is a one-shot estimate based on the truncated sample. The results in Table A.1 are
based on repeated estimates based on resampled data: we resample many times, and 817 is the median of all
these estimates. It is close to the one-shot estimate.
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types of adjustments increase. When r doubles, the estimate of M also approximately doubles
and the Bonferroni and Holm implied t-statistics increase by about 0.2, whereas the BHY implied
t-statistics increase by around 0.03 (under both significance levels).

Appendix B A Bayesian Approach to Multiple Tests

The following framework is adopted from Scott and Berger (2006) and highlights the key issues
in Bayesian multiple hypothesis testing.55 More sophisticated generalizations modify the basic
model but are unlikely to change the fundamental hierarchical testing structure.56 We use this
framework to explain the pros and cons of performing multiple testing in a Bayesian framework.

The hierarchical model is as follows:

H1. (Xi |μi,σ
2,γi )

iid∼ N (γiμi ,σ
2),

H2. μi |τ 2 iid∼ N (0,τ 2),γi |p0
iid∼ Ber(1−p0),

H3. (τ 2,σ 2)∼π1(τ 2,σ 2),p0 ∼π2(p0).

We explain each step and the notation in detail

H1. Xi denotes the average return generated from a long-short trading strategy based on a certain
factor; μi is the unknown mean return; σ 2 is the common variance for returns; and γi is
an indicator function, with γi =0 indicating a zero factor mean. γi is the counterpart of the
reject/accept decision in the usual (frequentists’) hypothesis testing framework.

H1 therefore says that factor returns are independent conditional on mean γiμi and
common variance σ 2, with γi =0 indicating that the factor is spurious. The common
variance assumption may look restrictive, but we can always scale factor returns by
changing the dollar investment in the long-short strategy. The crucial assumption is
conditional independence of average strategy returns. A certain form of conditional
independence is unavoidable for Bayesian hierarchical modeling57—probably unrealistic
for our application. We can easily think of scenarios in which average returns of different
strategies are correlated, even when population means are known. For example, it is well
known that two of the most popular factors, the Fama and French (1992) HML and SMB,
are correlated.

H2. The first-step population parameters μi ’s and γi ’s are assumed to be generated from two other
parametric distributions: μi ’s are independently generated from a normal distribution, and
γi ’s are simply generated from a Bernoulli distribution, that is, γi =0 with probability p0.

The normality assumption for the μi ’s requires the reported Xi ’s to randomly represent
either long/short or short/long strategy returns. If researchers have a tendency to report

55 We choose to present the full Bayes’ approach. An alternative approach—the empirical Bayes’ approach—is
closely related to the BHY method that controls the false-discovery rate (FDR). See Storey (2003) and Efron and
Tibshirani (2002) for the empirical Bayes’ interpretation of FDR. For details on the empirical Bayes’ method,
see Efron et al. (2001), and Efron (2004), 2008). For an in-depth investigation of the differences between the full
Bayes’and the empirical-Bayes’approach, see Scott and Berger (2010). For an application of the empirical-Bayes’
method in finance, see Markowitz and Xu (1994).

56 See Meng and Dempster (1987) and Whittemore (2007) for more works on the Bayesian approach in hypothesis
testing.

57 Conditional independence is crucial for the Bayesian framework and the construction of posterior likelihoods.
Although it can be extended to incorporate special dependence structures, there is no consensus on how to
systematically handle dependence. See Brown et al. (2014) for a discussion of independence in Bayesian multiple
testing. They also propose a spatial dependence structure into a Bayesian testing framework.
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positive abnormal returns, we need to randomly assign to these returns plus/minus signs.
The normality assumptions in both H1 and H2 are important as they are necessary to
guarantee the properness of the posterior distributions.

H3. Finally, the two variance variables τ 2 and σ 2 follow a joint prior distribution π1 and the
probability p0 follows a prior distribution π2.

Objective or “neutral” priors for π1 and π2 can be specified as:

π1(τ 2,σ 2) ∝ (τ 2 +σ 2)−2,

π2(p0) = Uniform(0,1).

Under this framework, the joint conditional likelihood function for Xi ’s is simply a product
of individual normal likelihood functions and the posterior probability that γi =1 (discovery)
can be calculated by applying Bayes’ law. When the number of trials is large, to calculate the
posterior probability, we need efficient methods, such as importance sampling, which involves
high-dimensional integrals.

One benefit of a Bayesian framework for multiple testing is that the multiplicity penalty term is
already embedded. In the frequentists’ framework, this is done by introducing FWER or FDR. In a
Bayesian framework, the so-called “Ockham’s razor effect”58 automatically adjusts the posterior
probabilities when more factors are simultaneously tested.59 Simulation studies in Scott and Berger
(2006) show how the discovery probabilities for a few initial signals increase when more noise is
added to the original sample.

However, there are several shortcomings for the Bayesian approach. Some of them are specific to
the context of our application and the others are generic to the Bayesian multiple testing framework.

At least two issues arise when applying the Bayesian approach to our factor selection problem.
First, we do not observe all tried factors. While we back out the distribution of hidden factors
parametrically under the frequentist framework, it is not clear how the missing data and the
multiple testing problems can be simultaneously solved under the Bayesian framework. Second,
the hierarchical testing framework may be overly restrictive. Both independence and normality
assumptions can have a large impact on the posterior distributions. Although normality can be
somewhat relaxed by using alternative distributions, the scope of alternative distributions is limited
as there are only a few distributions that can guarantee the properness of the posterior distributions.
Independence, as we previously discussed, is likely to be violated in our context. In contrast, the
three adjustment procedures under the frequentists’ framework are able to handle complex data
structures since they rely on only fundamental probability inequalities to restrict their objective
function—the type I error rate.

There are a few general concerns about the Bayesian multiple testing framework. First, it is not
clear what to do after obtaining the posterior probabilities for individual hypotheses. Presumably,
we should find a cutoff probability P and reject all hypotheses that have a posterior discovery
probability larger than P . But then we return to the initial problem of finding an appropriate cutoff
p-value, which is not a clear task. Scott and Berger (2006) suggest a decision-theoretic approach that
chooses the cutoff P by minimizing a loss function. The parameters of the loss function, however,
are again subjective. Second, the Bayesian posterior distributions are computationally challenging.
We document 300 factors, but there are potentially many more if missing factors are taken into
account. When M gets large, importance sampling is a necessity. However, results of importance
sampling rely on simulations and subjective choices of the centers of the probability distributions

58 See Jefferys and Berger (1992).

59 Intuitively, more complex models are penalized because extra parameters involve additional sources of
uncertainty. Simplicity is rewarded in a Bayesian framework as simple models produce sharp predictions. See
the discussions in Scott (2009).
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for random variables. Consequently, two researchers trying to calculate the same quantity might
obtain very different results. Moreover, in multiple testing, the curse of dimensionality generates
additional risks for Bayesian statistical inference.60 These technical issues create additional hurdles
for the application of the Bayesian approach.
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